[1]
M. -J. Jaffe, The role of ATP in mechanically stimulated rapid closure of the Venus's-Flytrap, Plant Physiol, vol. 51, p.17–18, (1973).
DOI: 10.1104/pp.51.1.17
Google Scholar
[2]
U. Lüttge, E. -V. Schǒch, E. Ball Can externally applied ATP supply energy to active ion uptake mechanisms of intact plant cells?, Aust J Plant Physiol, vol. 1, p.211–220, (1974).
DOI: 10.1071/pp9740211
Google Scholar
[3]
J Udvardy, G. -L. Farkas, ATP stimulates the formation of nucleases in excised Avena leaves, Z Pflantzenphysiol, vol. 69, p.394–401, (1973).
DOI: 10.1016/s0044-328x(73)80127-8
Google Scholar
[4]
W. Tang, et al, Extracellular ATP inhibits root gravitropism at concentrations that inhibit polar auxin transport, Plant Physiol, vol. 131, p.147– 154, (2003).
DOI: 10.1104/pp.013672
Google Scholar
[5]
J. Torreilles, Nitric oxide: one of the more conserved and widespread signaling molecules, Front Biosci, vol. 6, p.1161–1172, (2001).
DOI: 10.2741/a576
Google Scholar
[6]
L. An, Y. Liu, M. Zhang, T. Chen, X. Wang, Effects of nitric oxide on growth of maize seedling leaves in the presence or absence of ultraviolet-B radiation, J Plant Physiol, vol. 162, p.317–326, (2005).
DOI: 10.1016/j.jplph.2004.07.004
Google Scholar
[7]
J. -M. He, H. Xu, X. -P. She, X. -G. Song, W. -M. Zhao, The role and the interrelationship of hydrogen peroxide and nitric oxide in the UV-B-induced stomatal closure in broad bean, Funct Plant Biol, vol. 32, p.237–247, (2005).
DOI: 10.1071/fp04185
Google Scholar
[8]
S. -A. -H Mackerness, et al, Early signaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide, FEBS Lett, vol. 489, p.237–242, (2001).
DOI: 10.1016/s0014-5793(01)02103-2
Google Scholar
[9]
S. -J. Neill, et al, Hydrogen peroxide and nitric oxide as signaling molecules in plants. J Exp Bot, vol. 53, p.1237–1247, (2002).
DOI: 10.1093/jexbot/53.372.1237
Google Scholar
[10]
S. Shi, et al, Protective effect of nitric oxide against oxidative stress under ultraviolet-B radiation, Nitric Oxide, vol. 13, p.1–9, (2005).
DOI: 10.1016/j.niox.2005.04.006
Google Scholar
[11]
C. -H. Foyer, et al, Hydrogen peroxide and glutathione-associated mechanisms of acclamatory stress tolerance and signaling, Physiol Plant, vol. 100, p.241–254, (1997).
DOI: 10.1111/j.1399-3054.1997.tb04780.x
Google Scholar
[12]
X. -P. She, et al, Role and relationship of nitric oxide and hydrogen peroxide in light/dark-regulated stomatal movement in Vicia faba, Acta Botanica Sinica, vol. 46, p.1292–1300, (2004).
Google Scholar
[13]
. X. Zhang, et al, Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba, Plant Physiology, vol. 126, p.1438–1448, (2001).
DOI: 10.1104/pp.126.4.1438
Google Scholar
[14]
A. Nejidat, et al, Stomatal response to ATP mediated by phytochrome. Physiol Plant, vol. 57, p.367–370, (1983).
DOI: 10.1111/j.1399-3054.1983.tb02302.x
Google Scholar
[15]
A. Shaish, et al, The response of stomata to CO2 relates to its effect on respiration and ATP level, Physiol Plant, vol. 76, p.107–111, (1989).
DOI: 10.1111/j.1399-3054.1989.tb05460.x
Google Scholar
[16]
R. -R. Lew, J. -D. -W. Dearnaley, Extracellular nucleotide effects on electrical properties of growing Arabidopsis thaliana root hairs, Plant Sci, vol. 153, p.1–6, (2000).
DOI: 10.1016/s0168-9452(99)00242-3
Google Scholar