Effects of Long-Term Elevated CO2 on Rhizosphere and Bulk Soil Bacterial Community Structure in Pinus sylvestriformis Seedlings Fields

Article Preview

Abstract:

The effect of long-term elevated CO2 (as open top chambers) on rhizosphere and bulk bacterial community structure in Pinus sylvestriformis seedlings field was investigated in July, August, and September. The bacterial communities were processed by Denaturing Gradient Gel Electrophoresis (DGGE) analysis of bacterial 16S rDNA fragments amplified by PCR (Polymerase Chain Reaction) from DNA extracted directly from soil. DGGE profiles from rhizosphere samples showed large changes in rhizosphere bacterial community under elevated CO2 compared to ambient except for that in September. For bulk samples, bacterial community structure changed when exposed to elevated CO2 in three months. With the exception of bulk samples in August, a similitude of bacterial communities structures existed between different elevated CO2 concentrations by analyzing UPGMA dendrogram based on Jaccard’s coefficient.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 343-344)

Pages:

351-356

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. H. Rogers, S. A. Prior, G. B. Runion, R.J. Mitchell, Root to shoot ratio of crop as influenced by CO2, Plant and Soil, vol. 187, no. 2, pp.229-248, (1996).

DOI: 10.1007/bf00017090

Google Scholar

[2] K. S. Pregitzer, D. R. Zak, P. S. Curtis, M.E. Kubiske, J. A. Teeri, C. S. Vogel, Atmospheric CO2 soil nitrogen and turnover of fine roots, New Physiologist, vol. 129, no. 4, pp.579-585, April (1995).

DOI: 10.1111/j.1469-8137.1995.tb03025.x

Google Scholar

[3] Z. G. Cardon, Influence of rhizodeposition under elevated CO2 on plant nutrition and soil organic matter, Plant and soil, vol. 187, no. 2, pp.277-288, (1996).

DOI: 10.1007/bf00017093

Google Scholar

[4] E. Paterson, E.A.S. Rattray, K. Killham, Effect of elevated atmospheric CO2 concentration on C-partitioning and rhizosphere C-flow for three plant species, Soil Biology & Biochemistry, vol. 28, no. 2, pp.195-201, (1996).

DOI: 10.1016/0038-0717(95)00125-5

Google Scholar

[5] Hodge, E. Paterson, S. J. Grayston, C. D. Camphell, B. G. Ord, K. Killham, Characterisation and microbial utilization of exudates material from the rhizosphere of Lolium Perenne grown under CO2 enrichment, Soil Biology & Biochemistry, vol. 30, no. 8-9, pp.1033-1043, (1998).

DOI: 10.1016/s0038-0717(97)00269-1

Google Scholar

[6] P. Martín-Olmedo, R. M. Rees, J. Grace, The influence of plants grown under elevated CO2 and Nfertilization on soil nitrogen dynamics, Global Change Biology, vol. 8, no. 7, pp.643-657, (2002).

DOI: 10.1046/j.1365-2486.2002.00499.x

Google Scholar

[7] D. R. Zak, K. S. Pregitzer, J. S. King, W.E. Holmes, Elevated atmospheric CO2, fine roots and the response of soil microorganisms: a review and hypothesis, New Phytologist, vol. 147, no. 1, pp.201-202, (2000).

DOI: 10.1046/j.1469-8137.2000.00687.x

Google Scholar

[8] S. DÍza, J. P. Grime, J. Harris, E, Mcpherson, Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide, Nature, no. 364, pp.616-617, (1993).

DOI: 10.1038/364616a0

Google Scholar

[9] A.S. Allen, J.A. Andrews, A.C. Finzi, R. Matamala. D.D. Richter, W.H. Schlesinger, Effects of free-air CO2 enrichment (FACE) on belowground processes in a Pinus taeda forest, Ecological Applications, vol. 10, no. 2, pp.437-448, (2000).

DOI: 10.1890/1051-0761(2000)010[0437:eoface]2.0.co;2

Google Scholar

[10] M.A. Williams, C.W. Rice, C.E. Owensby, Carbon dynamics and microbial activity in tallgrass prairie exposed to elevated CO2 for 8 years, Plant and Soil, vol. 227, no. 1-2, pp.127-137, (2000).

Google Scholar

[11] V. Wiemken, E. Laczko, K. Ineichen,T. Boller, Effects of elevated carbon dioxide and nitrogen fertilization on mycorrhizal fine roots and the soil microbial community in beech-spruce ecosystems on siliceous and calcareous soil, Microbial Ecology, vol. 42, no. 2, pp.126-135, (2001).

DOI: 10.1007/s002480000080

Google Scholar

[12] D.R. Zak, K.S. Pregitzer, P.S. Curtis, W.E. Holmes, Atmospheric CO2 and the composition and function of soil microbial communities, Ecological Applications, vol. 10, no. 1, pp.47-59, 2000a.

DOI: 10.1890/1051-0761(2000)010[0047:acatca]2.0.co;2

Google Scholar

[13] D.B. Ringelberg, J.O. Stair, J. Almeida, R. J, Norby, E.G. O'Neill, D.C. White, Consequences of rising atmospheric carbon dioxide levels for the belowground microbiota associated with white oak, Journal of Environmental Quality, vol. 26, no. 2, pp.495-503, (1997).

DOI: 10.2134/jeq1997.00472425002600020022x

Google Scholar

[14] C.M. Montealegre, C.V. Kessel, C., M.P. Ruselle, M.J. Sadowsky, Changes in microbial activity and composition in a pasture ecosystem exposed to elevated atmospheric carbon dioxide, Plant and Soil, vol. 243, no. 2, pp.197-207, (2002).

Google Scholar

[15] B.S. Griffiths, K. Ritz, N. Ebblewhite, E. Paterson, K. Killham, Ryegrass rhizosphere microbial community structure under elevated carbon dioxide concentrations with observation on wheat rhizosphere, Soil Biology and Biochemistry, vol. 30, no. 3, pp.315-321, (1998).

DOI: 10.1016/s0038-0717(97)00133-8

Google Scholar

[16] X. Jia, S.J. Han, Y.M. Zhou, Responses of soil microbe to elevated CO2 in Pinus sylvestriformis and Pinus- koraiensis seedlings fields, Journal of Forestry Research, vol. 16, no. 3, pp.219-222, (2005).

DOI: 10.1109/esiat.2010.5567319

Google Scholar

[17] D.A. Bossio, K.M. Scow, N. Gunapala, K.J. Graham, Determinants of soil microbial communities: Effects of agricultural management, season, and soil type on phospholipid fatty acid profiles, Microbial Ecology, vol. 36, no. 1, pp.1-12, (1998).

DOI: 10.1007/s002489900087

Google Scholar

[18] S.J. Grayston, S. Wang, C.D. Campbell, A.C. Edwards, Selective influence of plant species on microbial diversity in rhizophere, Soil biology & Biochemistry, vol. 30, no. 3, pp.369-378, (1998).

DOI: 10.1016/s0038-0717(97)00124-7

Google Scholar

[19] Schmalenberger, C. Christoph, Tebbe, Bacterial diversity in maize rhizospheres: conclusions on the use of genetic profiles based on PCR-amplified partial small subunit rRNA genes in ecological studies, Molecular Ecology, vol. 12, no. 1, pp.251-262, (2003).

DOI: 10.1046/j.1365-294x.2003.01716.x

Google Scholar

[20] H.H. Rogers, G.B. Runton, S.V. Krupa, Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere, Environment Pollution, vol. 83, no. 1-2, pp.155-189, (1994).

DOI: 10.1016/0269-7491(94)90034-5

Google Scholar

[21] L. Hughes, A. Fakhri, Bazzaz, Effects of elevated CO2 on five plant-aphid interactions, Entomol, Exp. Apply, vol. 99, no. 1, pp.87-96, (2001).

DOI: 10.1046/j.1570-7458.2001.00805.x

Google Scholar

[22] Y.M. Zhou, S.J. Han, J.H. Zhang, C.J. Zou, C.R. Wang, Y.L. Chen, Photosynthetic characteristics of three tree species seedlings in Changbai Mountain under diffeent CO2 concentrations, Chin J Appl Eco, vol. 13, no. 1, pp.41-46, (2002).

Google Scholar

[23] P.A. Niklaus, J. Alphei, D. Ebersberger, C. Kampichler, E. Kandeler, D. Tscherko, Six years of in situ CO2 enrichment evoke changes in soil structure and soil biota of nutrient-poor grassland, Global Change Biology, vol. 9, no. 4, pp.585-600, (2003).

DOI: 10.1046/j.1365-2486.2003.00614.x

Google Scholar