[1]
H. H. Rogers, S. A. Prior, G. B. Runion, R.J. Mitchell, Root to shoot ratio of crop as influenced by CO2, Plant and Soil, vol. 187, no. 2, pp.229-248, (1996).
DOI: 10.1007/bf00017090
Google Scholar
[2]
K. S. Pregitzer, D. R. Zak, P. S. Curtis, M.E. Kubiske, J. A. Teeri, C. S. Vogel, Atmospheric CO2 soil nitrogen and turnover of fine roots, New Physiologist, vol. 129, no. 4, pp.579-585, April (1995).
DOI: 10.1111/j.1469-8137.1995.tb03025.x
Google Scholar
[3]
Z. G. Cardon, Influence of rhizodeposition under elevated CO2 on plant nutrition and soil organic matter, Plant and soil, vol. 187, no. 2, pp.277-288, (1996).
DOI: 10.1007/bf00017093
Google Scholar
[4]
E. Paterson, E.A.S. Rattray, K. Killham, Effect of elevated atmospheric CO2 concentration on C-partitioning and rhizosphere C-flow for three plant species, Soil Biology & Biochemistry, vol. 28, no. 2, pp.195-201, (1996).
DOI: 10.1016/0038-0717(95)00125-5
Google Scholar
[5]
Hodge, E. Paterson, S. J. Grayston, C. D. Camphell, B. G. Ord, K. Killham, Characterisation and microbial utilization of exudates material from the rhizosphere of Lolium Perenne grown under CO2 enrichment, Soil Biology & Biochemistry, vol. 30, no. 8-9, pp.1033-1043, (1998).
DOI: 10.1016/s0038-0717(97)00269-1
Google Scholar
[6]
P. Martín-Olmedo, R. M. Rees, J. Grace, The influence of plants grown under elevated CO2 and Nfertilization on soil nitrogen dynamics, Global Change Biology, vol. 8, no. 7, pp.643-657, (2002).
DOI: 10.1046/j.1365-2486.2002.00499.x
Google Scholar
[7]
D. R. Zak, K. S. Pregitzer, J. S. King, W.E. Holmes, Elevated atmospheric CO2, fine roots and the response of soil microorganisms: a review and hypothesis, New Phytologist, vol. 147, no. 1, pp.201-202, (2000).
DOI: 10.1046/j.1469-8137.2000.00687.x
Google Scholar
[8]
S. DÍza, J. P. Grime, J. Harris, E, Mcpherson, Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide, Nature, no. 364, pp.616-617, (1993).
DOI: 10.1038/364616a0
Google Scholar
[9]
A.S. Allen, J.A. Andrews, A.C. Finzi, R. Matamala. D.D. Richter, W.H. Schlesinger, Effects of free-air CO2 enrichment (FACE) on belowground processes in a Pinus taeda forest, Ecological Applications, vol. 10, no. 2, pp.437-448, (2000).
DOI: 10.1890/1051-0761(2000)010[0437:eoface]2.0.co;2
Google Scholar
[10]
M.A. Williams, C.W. Rice, C.E. Owensby, Carbon dynamics and microbial activity in tallgrass prairie exposed to elevated CO2 for 8 years, Plant and Soil, vol. 227, no. 1-2, pp.127-137, (2000).
Google Scholar
[11]
V. Wiemken, E. Laczko, K. Ineichen,T. Boller, Effects of elevated carbon dioxide and nitrogen fertilization on mycorrhizal fine roots and the soil microbial community in beech-spruce ecosystems on siliceous and calcareous soil, Microbial Ecology, vol. 42, no. 2, pp.126-135, (2001).
DOI: 10.1007/s002480000080
Google Scholar
[12]
D.R. Zak, K.S. Pregitzer, P.S. Curtis, W.E. Holmes, Atmospheric CO2 and the composition and function of soil microbial communities, Ecological Applications, vol. 10, no. 1, pp.47-59, 2000a.
DOI: 10.1890/1051-0761(2000)010[0047:acatca]2.0.co;2
Google Scholar
[13]
D.B. Ringelberg, J.O. Stair, J. Almeida, R. J, Norby, E.G. O'Neill, D.C. White, Consequences of rising atmospheric carbon dioxide levels for the belowground microbiota associated with white oak, Journal of Environmental Quality, vol. 26, no. 2, pp.495-503, (1997).
DOI: 10.2134/jeq1997.00472425002600020022x
Google Scholar
[14]
C.M. Montealegre, C.V. Kessel, C., M.P. Ruselle, M.J. Sadowsky, Changes in microbial activity and composition in a pasture ecosystem exposed to elevated atmospheric carbon dioxide, Plant and Soil, vol. 243, no. 2, pp.197-207, (2002).
Google Scholar
[15]
B.S. Griffiths, K. Ritz, N. Ebblewhite, E. Paterson, K. Killham, Ryegrass rhizosphere microbial community structure under elevated carbon dioxide concentrations with observation on wheat rhizosphere, Soil Biology and Biochemistry, vol. 30, no. 3, pp.315-321, (1998).
DOI: 10.1016/s0038-0717(97)00133-8
Google Scholar
[16]
X. Jia, S.J. Han, Y.M. Zhou, Responses of soil microbe to elevated CO2 in Pinus sylvestriformis and Pinus- koraiensis seedlings fields, Journal of Forestry Research, vol. 16, no. 3, pp.219-222, (2005).
DOI: 10.1109/esiat.2010.5567319
Google Scholar
[17]
D.A. Bossio, K.M. Scow, N. Gunapala, K.J. Graham, Determinants of soil microbial communities: Effects of agricultural management, season, and soil type on phospholipid fatty acid profiles, Microbial Ecology, vol. 36, no. 1, pp.1-12, (1998).
DOI: 10.1007/s002489900087
Google Scholar
[18]
S.J. Grayston, S. Wang, C.D. Campbell, A.C. Edwards, Selective influence of plant species on microbial diversity in rhizophere, Soil biology & Biochemistry, vol. 30, no. 3, pp.369-378, (1998).
DOI: 10.1016/s0038-0717(97)00124-7
Google Scholar
[19]
Schmalenberger, C. Christoph, Tebbe, Bacterial diversity in maize rhizospheres: conclusions on the use of genetic profiles based on PCR-amplified partial small subunit rRNA genes in ecological studies, Molecular Ecology, vol. 12, no. 1, pp.251-262, (2003).
DOI: 10.1046/j.1365-294x.2003.01716.x
Google Scholar
[20]
H.H. Rogers, G.B. Runton, S.V. Krupa, Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere, Environment Pollution, vol. 83, no. 1-2, pp.155-189, (1994).
DOI: 10.1016/0269-7491(94)90034-5
Google Scholar
[21]
L. Hughes, A. Fakhri, Bazzaz, Effects of elevated CO2 on five plant-aphid interactions, Entomol, Exp. Apply, vol. 99, no. 1, pp.87-96, (2001).
DOI: 10.1046/j.1570-7458.2001.00805.x
Google Scholar
[22]
Y.M. Zhou, S.J. Han, J.H. Zhang, C.J. Zou, C.R. Wang, Y.L. Chen, Photosynthetic characteristics of three tree species seedlings in Changbai Mountain under diffeent CO2 concentrations, Chin J Appl Eco, vol. 13, no. 1, pp.41-46, (2002).
Google Scholar
[23]
P.A. Niklaus, J. Alphei, D. Ebersberger, C. Kampichler, E. Kandeler, D. Tscherko, Six years of in situ CO2 enrichment evoke changes in soil structure and soil biota of nutrient-poor grassland, Global Change Biology, vol. 9, no. 4, pp.585-600, (2003).
DOI: 10.1046/j.1365-2486.2003.00614.x
Google Scholar