[1]
G. Mardones, and A. Venegas, Chromogenic plate assay distinguishing bacteriolytic from bacteriostatic activity of an antibiotic agent, J. Microbio. Metho, vol. 40, pp.199-206, (2000).
DOI: 10.1016/s0167-7012(00)00125-1
Google Scholar
[2]
DeGrado W.F., Kezdy, F.J., and Kaiser, E.T., Design, synthesis and characterization of a cytotoxic peptide with melittin-like activity, J. Am. Chem. Soc, vol. 103, pp.679-681, (1981).
DOI: 10.1021/ja00393a035
Google Scholar
[3]
Kaiser, E.T., and Kezdy, F.J., Secondary structures of proteins and peptides in amphiphilic environments, Proc. Natl. Acad. Sci. USA, vol. 80, pp.1137-1143, (1983).
DOI: 10.1073/pnas.80.4.1137
Google Scholar
[4]
Ganz, T., Selsted, M.E., and Lehrer, R.I., Defensins, Eur. J. Haematol, vol. 44, pp.1-8, (1990).
Google Scholar
[5]
Habermann, E., Bee and wasp venoms, Science, vol. 177, p.314–322, (1972).
Google Scholar
[6]
Steiner, H., Hultmark, D., Engstro¨m, A., Bennich, H., and Boman H.G., Sequence and specificity of two antibacterial proteins involved in insect immunity, , Nature, vol. 292, pp.246-248, (1981).
DOI: 10.1038/292246a0
Google Scholar
[7]
Okada, M., and Natori, S., Primary structure of sarcotoxin I, an antibacterial protein induced in the hemolymph of Sarcophaga peregrina (Flesh Fly) larvae, J. Biol. Chem., vol. 260, pp.7174-7177, (1985).
DOI: 10.1016/s0021-9258(17)39590-x
Google Scholar
[8]
Zasloff, M., and Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor, Proc. Natl. Acad. Sci. USA, vol. 84, pp.5449-5454, (1987).
DOI: 10.1073/pnas.84.15.5449
Google Scholar
[9]
Westerhoff, H.V., Juretic, D., Hendler, R.W., and Zasloff, M., Magainins and the disruption of membrane-linked free-energy transduction, Proc. Natl. Acad. Sci. USA, vol. 86, pp.6597-6601, (1989).
DOI: 10.1073/pnas.86.17.6597
Google Scholar
[10]
Christensen, B., Fink, J., and Merrifield, R.B., Mauzerall, D., Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes, Proc. Natl. Acad. Sci. USA, vol. 85, pp.5072-5076., (1988).
DOI: 10.1073/pnas.85.14.5072
Google Scholar
[11]
Cruciani, R.A., Stanley, E.F., Zasloff, M., Lewis, D.L., and Barker, J.L., The antibiotic magainin II from the African clawed frog forms an anion permeable ionophore in artificial membranes, J. Biophys, vol. 53, pp. 9a, (1988).
Google Scholar
[12]
Kagan, B.L., Selsted, M.E., Ganz, T., Lehrer, and R.I., Antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes. Proc, Natl Acad. Sci. USA, vol. 87, pp.210-214, (1990).
DOI: 10.1073/pnas.87.1.210
Google Scholar
[13]
Bessalle, R., Kapitkovsky, A., Gorea, A., Shalit, I., Fridkin, and M., All-D-magainin: chirality, antimicrobial activity and proteolytic resistance, FEBS Lett, vol. 274, pp.151-155. (1990).
DOI: 10.1016/0014-5793(90)81351-n
Google Scholar
[14]
Flouret, G., and du Vigneaud, V., The synthesis of D-oxytocin, the enantiomer of the posterior pituitary hormone, oxytocin, J. Am. Chem. Soc. vol. 87, pp.3775-3776, (1965).
DOI: 10.1021/ja01094a045
Google Scholar
[15]
Morley, J.S., Tracy, H.J., and Gregory, R.A., Structure–function relationships in the active C-terminal tetrapeptide sequence of gastrin, Nature, vol. 207, pp.1356-1359, (1965).
DOI: 10.1038/2071356a0
Google Scholar
[16]
Stewart, J.M., and Woolley, D.W., All-D-bradykinin and the problem of peptide antimetabolites, Nature, vol. 206, pp.619-620, (1965).
DOI: 10.1038/206619b0
Google Scholar
[17]
Casteels, P., and Tempst, P., Apidaecin-type peptide antibiotics function through a non-poreforming mechanism involving stereospecificity. Biochem. Biophys, Res. Commun, vol. 199, pp.339-345, (1994).
DOI: 10.1006/bbrc.1994.1234
Google Scholar
[18]
Z Wang, and S Zhang. The role of lysozyme and complement in the antibacterial activity of zebrafish (Danio rerio) egg cytosol. Fish & shellfish immunology, vol. 29, pp.773-777, (2010).
DOI: 10.1016/j.fsi.2010.07.002
Google Scholar