Distinguishing Bacteriolytic from Bacteriostatic Activity of an Antibiotic Agent by Real-Time Quantitative PCR

Article Preview

Abstract:

A simple and rapid real-time quantitative PCR assay was devised to discriminate bacteriolytic from bacteriostatic activity for a given antibacterial agent. Bacteria suspension was incubated with the compound solution, the mixture was centrifuged and supernatant was removed completely, the obtained pellet was then used as the DNA template for PCR. Then the bacteriostatic and bacteriolytic activity can be inferred by the quantity of PCR product. Moreover, the parameters that influence the assay sensitivity was discussed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 343-344)

Pages:

357-360

Citation:

Online since:

September 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Mardones, and A. Venegas, Chromogenic plate assay distinguishing bacteriolytic from bacteriostatic activity of an antibiotic agent, J. Microbio. Metho, vol. 40, pp.199-206, (2000).

DOI: 10.1016/s0167-7012(00)00125-1

Google Scholar

[2] DeGrado W.F., Kezdy, F.J., and Kaiser, E.T., Design, synthesis and characterization of a cytotoxic peptide with melittin-like activity, J. Am. Chem. Soc, vol. 103, pp.679-681, (1981).

DOI: 10.1021/ja00393a035

Google Scholar

[3] Kaiser, E.T., and Kezdy, F.J., Secondary structures of proteins and peptides in amphiphilic environments, Proc. Natl. Acad. Sci. USA, vol. 80, pp.1137-1143, (1983).

DOI: 10.1073/pnas.80.4.1137

Google Scholar

[4] Ganz, T., Selsted, M.E., and Lehrer, R.I., Defensins, Eur. J. Haematol, vol. 44, pp.1-8, (1990).

Google Scholar

[5] Habermann, E., Bee and wasp venoms, Science, vol. 177, p.314–322, (1972).

Google Scholar

[6] Steiner, H., Hultmark, D., Engstro¨m, A., Bennich, H., and Boman H.G., Sequence and specificity of two antibacterial proteins involved in insect immunity, , Nature, vol. 292, pp.246-248, (1981).

DOI: 10.1038/292246a0

Google Scholar

[7] Okada, M., and Natori, S., Primary structure of sarcotoxin I, an antibacterial protein induced in the hemolymph of Sarcophaga peregrina (Flesh Fly) larvae, J. Biol. Chem., vol. 260, pp.7174-7177, (1985).

DOI: 10.1016/s0021-9258(17)39590-x

Google Scholar

[8] Zasloff, M., and Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor, Proc. Natl. Acad. Sci. USA, vol. 84, pp.5449-5454, (1987).

DOI: 10.1073/pnas.84.15.5449

Google Scholar

[9] Westerhoff, H.V., Juretic, D., Hendler, R.W., and Zasloff, M., Magainins and the disruption of membrane-linked free-energy transduction, Proc. Natl. Acad. Sci. USA, vol. 86, pp.6597-6601, (1989).

DOI: 10.1073/pnas.86.17.6597

Google Scholar

[10] Christensen, B., Fink, J., and Merrifield, R.B., Mauzerall, D., Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes, Proc. Natl. Acad. Sci. USA, vol. 85, pp.5072-5076., (1988).

DOI: 10.1073/pnas.85.14.5072

Google Scholar

[11] Cruciani, R.A., Stanley, E.F., Zasloff, M., Lewis, D.L., and Barker, J.L., The antibiotic magainin II from the African clawed frog forms an anion permeable ionophore in artificial membranes, J. Biophys, vol. 53, pp. 9a, (1988).

Google Scholar

[12] Kagan, B.L., Selsted, M.E., Ganz, T., Lehrer, and R.I., Antimicrobial defensin peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes. Proc, Natl Acad. Sci. USA, vol. 87, pp.210-214, (1990).

DOI: 10.1073/pnas.87.1.210

Google Scholar

[13] Bessalle, R., Kapitkovsky, A., Gorea, A., Shalit, I., Fridkin, and M., All-D-magainin: chirality, antimicrobial activity and proteolytic resistance, FEBS Lett, vol. 274, pp.151-155. (1990).

DOI: 10.1016/0014-5793(90)81351-n

Google Scholar

[14] Flouret, G., and du Vigneaud, V., The synthesis of D-oxytocin, the enantiomer of the posterior pituitary hormone, oxytocin, J. Am. Chem. Soc. vol. 87, pp.3775-3776, (1965).

DOI: 10.1021/ja01094a045

Google Scholar

[15] Morley, J.S., Tracy, H.J., and Gregory, R.A., Structure–function relationships in the active C-terminal tetrapeptide sequence of gastrin, Nature, vol. 207, pp.1356-1359, (1965).

DOI: 10.1038/2071356a0

Google Scholar

[16] Stewart, J.M., and Woolley, D.W., All-D-bradykinin and the problem of peptide antimetabolites, Nature, vol. 206, pp.619-620, (1965).

DOI: 10.1038/206619b0

Google Scholar

[17] Casteels, P., and Tempst, P., Apidaecin-type peptide antibiotics function through a non-poreforming mechanism involving stereospecificity. Biochem. Biophys, Res. Commun, vol. 199, pp.339-345, (1994).

DOI: 10.1006/bbrc.1994.1234

Google Scholar

[18] Z Wang, and S Zhang. The role of lysozyme and complement in the antibacterial activity of zebrafish (Danio rerio) egg cytosol. Fish & shellfish immunology, vol. 29, pp.773-777, (2010).

DOI: 10.1016/j.fsi.2010.07.002

Google Scholar