Molecular Cloning and Tissue-Specific Expression of the Heart-Type Fatty Acid-Binding Protein (H-FABP)

Article Preview

Abstract:

In order to understand the structure and function of H-FABP gene, reveal the effect on the heart-type fatty acid-binding protein in goat, the cDNA of H-FABP gene was cloned and sequenced from heart of Tianfu goat (an emerging breed) by T-A clone techniques. The structure and function of H-FABP were analyzed by bioinformatics, and the gene expression profile in different tissues was examined by real-time PCR. The results showed that the full sequence of H-FABP cDNA is 650 bp, containing 402 bp coding region (CDS) encoding 133 amino acids. The isoelectric point (pI) of the protein is 6.11, and the molecular weight is 14.7 kDa. There were eight phosphorylational sites in this protein. The secondary structure of the protein was mainly α-helix, random coil and extended strand structure. The deduced amino acid sequence of H-FABP shared significant identity with the H-FABP from other mammals. The phylogenic tree based on H-FABP protein sequence was detected the closest relationship to cattle. A predicted 3D model was constructed by homology modeling. H-FABP mRNA is a broad-spectrum expression gene, which was detected in heart, liver, spleen, lung, kidney, longissimus muscle and leg muscle. In particular, high expression levels of H-FABP mRNA were detected in heart, longissimus muscle and leg muscle, but low expressions were observed in liver tissue.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 343-344)

Pages:

438-447

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. K. Ockner, J. A. Manning, R. B. Poppenhausen, and W. K. Ho, A binding protein for fatty acids in cytosol of intestinal mucosa, liver, myocardium, and other tissues, Science, vol. 177, pp.56-8, Jul 7 (1972).

DOI: 10.1126/science.177.4043.56

Google Scholar

[2] A. Chmurzynska, The multigene family of fatty acid-binding proteins (FABPs): function, structure and polymorphism, J Appl Genet, vol. 47, pp.39-48, (2006).

DOI: 10.1007/bf03194597

Google Scholar

[3] C. Jurie, I. Cassar-Malek, M. Bonnet, C. Leroux, D. Bauchart, P. Boulesteix, D. W. Pethick, and J. F. Hocquette, Adipocyte fatty acid-binding protein and mitochondrial enzyme activities in muscles as relevant indicators of marbling in cattle, J Anim Sci, vol. 85, pp.2660-9, Oct (2007).

DOI: 10.2527/jas.2006-837

Google Scholar

[4] M. M. Becker, B. H. Kalinna, G. J. Waine, and D. P. McManus, Gene cloning, overproduction and purification of a functionally active cytoplasmic fatty acid-binding protein (Sj-FABPC) from the human blood fluke Schistosoma japonicum, Gene, vol. 148, pp.321-5, Oct 21 (1994).

DOI: 10.1016/0378-1119(94)90706-4

Google Scholar

[5] N. Haunerland, Fatty acid binding protein in locust and mammalian muscle. Comparison of structure, function and regulation, Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, vol. 109, pp.199-208, (1994).

DOI: 10.1016/0305-0491(94)90003-5

Google Scholar

[6] B. Binas, H. Danneberg, J. McWhir, L. Mullins, and A. J. Clark, Requirement for the heart-type fatty acid binding protein in cardiac fatty acid utilization, FASEB J, vol. 13, pp.805-12, May (1999).

DOI: 10.1096/fasebj.13.8.805

Google Scholar

[7] F. G. Schaap, B. Binas, H. Danneberg, G. J. van der Vusse, and J. F. Glatz, Impaired long-chain fatty acid utilization by cardiac myocytes isolated from mice lacking the heart-type fatty acid binding protein gene, Circ Res, vol. 85, pp.329-37, Aug 20 (1999).

DOI: 10.1161/01.res.85.4.329

Google Scholar

[8] R. O. Heuckeroth, E. H. Birkenmeier, M. S. Levin, and J. I. Gordon, Analysis of the tissue-specific expression, developmental regulation, and linkage relationships of a rodent gene encoding heart fatty acid binding protein, J Biol Chem, vol. 262, pp.9709-17, Jul 15 (1987).

DOI: 10.1016/s0021-9258(18)47992-6

Google Scholar

[9] A. Kurtz, A. Zimmer, F. Schnutgen, G. Bruning, F. Spener, and T. Muller, The expression pattern of a novel gene encoding brain-fatty acid binding protein correlates with neuronal and glial cell development, Development, vol. 120, pp.2637-49, Sep (1994).

DOI: 10.1242/dev.120.9.2637

Google Scholar

[10] F. Gerbens, G. Rettenberger, J. A. Lenstra, J. H. Veerkamp, and M. F. te Pas, Characterization, chromosomal localization, and genetic variation of the porcine heart fatty acid-binding protein gene, Mamm Genome, vol. 8, pp.328-32, May (1997).

DOI: 10.1007/s003359900433

Google Scholar

[11] F. Gerbens, A. J. van Erp, F. L. Harders, F. J. Verburg, T. H. Meuwissen, J. H. Veerkamp, and M. F. te Pas, Effect of genetic variants of the heart fatty acid-binding protein gene on intramuscular fat and performance traits in pigs, J Anim Sci, vol. 77, pp.846-52, Apr (1999).

DOI: 10.2527/1999.774846x

Google Scholar

[12] J. Zhang, J. Rickers-Haunerland, I. Dawe, and N. Haunerland, Structure and chromosomal location of the rat gene encoding the heart fatty acid-binding protein, European Journal of Biochemistry, vol. 266, pp.347-351, (1999).

DOI: 10.1046/j.1432-1327.1999.00860.x

Google Scholar

[13] J. H. Calvo, D. Vaiman, N. Saidi-Mehtar, A. Beattie, J. J. Jurado, and M. Serrano, Characterization, genetic variation and chromosomal assignment to sheep chromosome 2 of the ovine heart fatty acid-binding protein gene (FABP3), Cytogenet Genome Res, vol. 98, pp.270-3, (2002).

DOI: 10.1159/000071047

Google Scholar

[14] T. Urban, R. Mikolasova, J. Kuciel, M. Ernst, and I. Ingr, A study of associations of the H-FABP genotypes with fat and meat production of pigs, J Appl Genet, vol. 43, pp.505-9, (2002).

Google Scholar

[15] M. H. Ye, J. L. Chen, G. P. Zhao, M. Q. Zheng, and J. Wen, Associations of A-FABP and H-FABP markers with the content of intramuscular fat in Beijing-You chicken, Anim Biotechnol, vol. 21, pp.14-24, (2010).

DOI: 10.1080/10495390903328116

Google Scholar

[16] T. Schwede, J. Kopp, N. Guex, and M. C. Peitsch, SWISS-MODEL: An automated protein homology-modeling server, Nucleic Acids Res, vol. 31, pp.3381-5, Jul 1 (2003).

DOI: 10.1093/nar/gkg520

Google Scholar

[17] N. Guex and M. C. Peitsch, SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling, Electrophoresis, vol. 18, pp.2714-23, Dec (1997).

DOI: 10.1002/elps.1150181505

Google Scholar

[18] K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T) Method, Methods, vol. 25, pp.402-8, Dec (2001).

DOI: 10.1006/meth.2001.1262

Google Scholar

[19] J. D. Thompson, D. G. Higgins, and T. J. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res, vol. 22, pp.4673-80, Nov 11 (1994).

DOI: 10.1093/nar/22.22.4673

Google Scholar

[20] D. Lassen, C. Lucke, M. Kveder, A. Mesgarzadeh, J. M. Schmidt, B. Specht, A. Lezius, F. Spener, and H. Ruterjans, Three-dimensional structure of bovine heart fatty-acid-binding protein with bound palmitic acid, determined by multidimensional NMR spectroscopy, Eur J Biochem, vol. 230, pp.266-80, May 15 (1995).

DOI: 10.1111/j.1432-1033.1995.0266i.x

Google Scholar

[21] A. Zimmerman and J. Veerkamp, New insights into the structure and function of fatty acid-binding proteins, Cellular and Molecular Life Sciences, vol. 59, pp.1096-1116, (2002).

DOI: 10.1007/s00018-002-8490-y

Google Scholar

[22] F. A. Van Nieuwenhoven, C. P. Verstijnen, N. A. Abumrad, P. H. Willemsen, G. J. Van Eys, G. J. Van der Vusse, and J. F. Glatz, Putative membrane fatty acid translocase and cytoplasmic fatty acid-binding protein are co-expressed in rat heart and skeletal muscles, Biochem Biophys Res Commun, vol. 207, pp.747-52, Feb 15 (1995).

DOI: 10.1006/bbrc.1995.1250

Google Scholar

[23] S. M. Zhao, L. J. Ren, L. Chen, X. Zhang, M. L. Cheng, W. Z. Li, Y. Y. Zhang, and S. Z. Gao, Differential expression of lipid metabolism related genes in porcine muscle tissue leading to different intramuscular fat deposition, Lipids, vol. 44, pp.1029-37, Nov (2009).

DOI: 10.1007/s11745-009-3356-9

Google Scholar

[24] Q. Wang, H. Li, S. Liu, G. Wang, and Y. Wang, Cloning and tissue expression of chicken heart fatty acid-binding protein and intestine fatty acid-binding protein genes, Anim Biotechnol, vol. 16, pp.191-201, (2005).

DOI: 10.1080/10495390500276882

Google Scholar

[25] Z. Xu-ting, D. Biao, Z. Hong, C. Dong-sheng, X. Guo-qing, D. Xiu-jun, Z. Jun, G. Dao-qing, and G. Zhi-liang, Cloning and Tissue Expression of Duck H-FABP Gene [J], Jiangsu Journal of Agricultural Sciences, vol. 5, (2009).

DOI: 10.1017/s1479236209990234

Google Scholar

[26] K. Motojima, Differential effects of PPARalpha activators on induction of ectopic expression of tissue-specific fatty acid binding protein genes in the mouse liver, Int J Biochem Cell Biol, vol. 32, pp.1085-92, Oct (2000).

DOI: 10.1016/s1357-2725(00)00046-7

Google Scholar

[27] M. Furuhashi, N. Ura, H. Murakami, M. Hyakukoku, K. Yamaguchi, K. Higashiura, and K. Shimamoto, Fenofibrate improves insulin sensitivity in connection with intramuscular lipid content, muscle fatty acid-binding protein, and beta-oxidation in skeletal muscle, J Endocrinol, vol. 174, pp.321-9, Aug (2002).

DOI: 10.1677/joe.0.1740321

Google Scholar

[28] J. H. Veerkamp and H. T. van Moerkerk, Fatty acid-binding protein and its relation to fatty acid oxidation, Mol Cell Biochem, vol. 123, pp.101-6, Jun 9-23 (1993).

DOI: 10.1007/bf01076480

Google Scholar