[1]
Chen, G., White, P.A. The mutagenic hazards of aquatic sediments: a review. Mutation Research e Reviews in Mutation Research, vol. 567, pp.151-225, (2004).
DOI: 10.1016/j.mrrev.2004.08.005
Google Scholar
[2]
Huichun Zhang, Ching-Hua Huang. Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite. Chemosphere, vol. 66, p.1502–1512, (2007).
DOI: 10.1016/j.chemosphere.2006.08.024
Google Scholar
[3]
Biselli, S., Reineke, N., Heinzel, N., Kammann, U., Franke, S., Huehnerfuss, H., Theobald, N. Bioassay-directed fractionation of organic extracts of marine surface sediments from the North and Baltic sea - Part I: determination and identification of organic pollutants. Journal of Soils and Sediments, vol. 5, pp.171-181, (2005).
DOI: 10.1065/jss2004.10.124.1
Google Scholar
[4]
Stumpf, M., Ternes, T.A., Haberer, K., Seel, P., Bauman, W. Determination of pharmaceutics in sewage plants and river water. Vom Wasser, vol. 86, p.291–303, (1996).
Google Scholar
[5]
Hirsh, R., Ternes, T., Haberer, K., Kratz, K.L. Occurrence of antibiotics in the aquatic environment. Sci. Total Environ. Vol. 225, p.109–118, (1999).
DOI: 10.1016/s0048-9697(98)00337-4
Google Scholar
[6]
Zuccato, E., Calamari, D., Natangelo, M., Fanelli, R. Presence of therapeutic drugs in the environment. Lancet, vol. 355, p.1789–1790, (2000).
DOI: 10.1016/s0140-6736(00)02270-4
Google Scholar
[7]
Francesco Pomati, Andrew G. Netting, Davide Calamari, Brett A. Neilan. Effects of erythromycin, tetracycline and ibuprofen on the growth of Synechocystis sp. and Lemna minor. Aquatic Toxicology, vol. 67, p.387–396, (2004).
DOI: 10.1016/j.aquatox.2004.02.001
Google Scholar
[8]
Bommarius, A.S., Schwarma, M., Drauz, K. Biocatalysis to amino-based chiral pharmaceuticals-examples and perspectives. J. Mol. Catal. B Enzym., vol. 5, p.1–11, (1998).
DOI: 10.1016/s1381-1177(98)00009-5
Google Scholar
[9]
Wen-Yong Lou, Min-Hua Zong, Yu-Ying Liu, Ju-Fang Wang. Efficient enantioselective hydrolysis of d, l-phenylglycine methyl ester catalyzed by immobilized Candida Antarctica lipase B in ionic liquid containing systems. Journal of Biotechnology, vol. 125, p.64–74, (2006).
DOI: 10.1016/j.jbiotec.2006.01.017
Google Scholar
[10]
Theerasak Rojanarata, Praneet Opanasopit, Tanasait Ngawhirunpat, Choedchai Saehuanb, Suthep Wiyakruttac, Vithaya Meevootisom. A simple, sensitive and green bienzymatic UV-spectrophotometric assay of amoxicillin formulations. Enzyme and Microbial Technology, vol. 46, p.292–296, (2010).
DOI: 10.1016/j.enzmictec.2009.11.011
Google Scholar
[11]
Yanfeng Gao, Xin Liu, Weixia Liu, Yuanming Qi, Xuefeng Liu, Yifeng Zhoua and Rui Wang. Opioid receptor binding and antinociceptive activity of the analogues of endomorphin-2 and morphiceptin with phenylalanine mimics in the position 3 or 4. Bioorganic & Medicinal Chemistry Letters, vol. 16, p.3688–3692, (2006).
DOI: 10.1016/j.bmcl.2006.04.063
Google Scholar
[12]
Xiaofeng X, Zhenghua S. Ultrasensitive determination of amoxicillin using chemiluminescence with flow injection analysis. Spectroscopy, vol. 20, p.37–43, (2006).
DOI: 10.1155/2006/270417
Google Scholar
[13]
F.J. Benitez, J.L. Acero, F.J. Real, Degrading of carbofuran by using ozone, UV, radiation and advanced oxidation processes, J. Hazard. Mater., vol. B89, p.51–65, (2002).
DOI: 10.1016/s0304-3894(01)00300-4
Google Scholar
[14]
C.L. Duarte, M.H.O. Sampa, P.R. Rela, H. Oikawa, C.G. Silveira, A.L. Azevedo. Advanced oxidation process by electron-beam-irradiationinduced decomposition of pollutants in industrial effluents. Radiation Physics and Chemistry, vol. 63, p.647–651, (2002).
DOI: 10.1016/s0969-806x(01)00560-6
Google Scholar
[15]
Idil Arslan-Alaton. Degradation of a commercial textile biocide with advanced oxidation processes and ozone. Journal of Environmental Management, vol. 82, p.145–154, (2007).
DOI: 10.1016/j.jenvman.2005.12.021
Google Scholar
[16]
Claus Höfl, Gerhard Sigl, Oliver Specht, Ilse Wurdack, Dietrich Wabner. Oxidative degradation of aox and cod by different advanced oxidation processes: A comparative study with two samples of a pharmaceutical wastewater. Water Science and Technology, vol. 35, iss. 4, pp.257-264, (1997).
DOI: 10.2166/wst.1997.0132
Google Scholar
[17]
ZAYAS Perez Teresa, GEISSLER Gunther, HERNANDEZ Fernando. Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes. Journal of Environmental Sciences, vol. 19, p.300–305, (2007).
DOI: 10.1016/s1001-0742(07)60049-7
Google Scholar
[18]
Walid K. Lafi, Z. Al-Qodah. Combined advanced oxidation and biological treatment processes for the removal of pesticides from aqueous solutions. Journal of Hazardous Materials, vol. B137, p.489–497, (2006).
DOI: 10.1016/j.jhazmat.2006.02.027
Google Scholar
[19]
Mvula,E., Schuchman n,M. -N., von Sonntag,C. Reactions of phenol-OH-adduct radicals. Phenoxyl radical formation by water elimination vs. oxidation by dioxygen. J. Chem. Soc. Perkin Trans., vol. 2, p.264–268, (2001).
DOI: 10.1039/b008434o
Google Scholar
[20]
Maria Helena de Oliveira Sampa, Paulo Roberto Rela, Alexandre Las Casas, Manoel Nunes Mori, Celina Lopes Duarte. Treatment of industrial effluents usingelectron beam accelerator and adsorption with activated carbon: a comparative study. Radiation Physics and Chemistry, vol. 71, p.457–460, (2004).
DOI: 10.1016/j.radphyschem.2004.03.023
Google Scholar
[21]
K. Kubesch,R. Zona,S. Solar,P. Gehringer. Degradation of catechol by ionizing radiation, ozone and the combined process ozone-electron-beam. Radiation Physics and Chemistry, vol. 72, p.447–453, (2005).
DOI: 10.1016/j.radphyschem.2004.01.007
Google Scholar
[22]
L. Jian, W.F. Wang, Z.D. Zhang, S.D. Yao, J.S. Zhang, N.Y. Lin, Reactive intermediates in laser photolysis of guanosine, Res. Chem. Interm., vol. 15, p.293–301, (1991).
DOI: 10.1163/156856791x00390
Google Scholar
[23]
Minghong Wu, Haijian Zhong, Zheng Jiao, Zhen Li, Yufei Sun. Synthesis of PbS nanocrystallites by electron beam irradiation. Colloids and Surfaces A: Physicochem. Eng. Aspects, vol. 313–314, p.35–39, (2008).
DOI: 10.1016/j.colsurfa.2007.04.068
Google Scholar
[24]
M.S. Grodowski, B. Veyret, K. Weiss, Photochemistry of flavins. II. Photophysical properties of alloxazines and isoalloxazines, Photochem. Photobiol., vol. 26, p.341–352, (1977).
DOI: 10.1111/j.1751-1097.1977.tb07495.x
Google Scholar
[25]
E.J. Land, A.J. Swallow, One-electron reactions in biochemical system as studied by pulse radiolysis. II Riboflavin, Biochemistry, vol. 8, p.2117–2125, (1969).
DOI: 10.1021/bi00833a050
Google Scholar
[26]
K. Kishore, P.N. Moorthy, S.N. Guha, Pulse radiolysis study of the one electron oxidation of riboflavin, Radiat. Phys. Chem., vol. 38, p.119–125, (1991).
DOI: 10.1016/1359-0197(91)90053-5
Google Scholar
[27]
Buxton G.V., Greenstock C.L., Helman W.P., Ross, A.B. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solution. J. Phys. Chem. Ref. Data., vol. 17, p.513–886, (1988).
DOI: 10.1063/1.555805
Google Scholar
[28]
P.F. Heelis, B.J. Parsons, G.O. Phillips, A.J. Swallow, One-electron oxidation of flavins. A flash photolysis and pulse radiolysis study, J. Phys. Chem., vol. 90, p.6833–6836, (1986).
DOI: 10.1021/j100284a025
Google Scholar