Impacts of Sodium Citrate on Metabolic Flux Distributions of L-Valine Fermentation

Article Preview

Abstract:

The effect of sodium citrate on the metabolic flux distributions in the middle and late periods of L-valine production by Corynebacterium glutamicum XV0505 was obtained. It was shown that when sodium citrate (2.0 g/L) was added into the initial fermentation culture medium, the metabolic flux of Embden-Meyerhof-Parnas (EMP) route decreased from 96.43 to 91.13, and the metabolic flux of Hexose Monophophate (HMP) route increased from 3.56 to 8.87, and the metabolic flux flowing to L-alanine and acetate was decreased by 21.1% and 32.4%, respectively. Meanwhile, the metabolic flux of biosynthesis route of L-valine was increased by 10.74%. Therefore, sodium citrate can change the metabolic flux distribution in the key nodes of biosynthesis route of L-valine, decrease the generation of byproducts, and increase the metabolic flux in the biosynthesis route of L-valine.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 343-344)

Pages:

643-648

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ruklisha M., Paegle L., Denina I. (2007).

Google Scholar

[2] Zhang K.X., Zhao L.L., Zhang B., Chen N. (2003). Analysis of L-valine biosynthesis mechanism by metabolic flux balance model. Microbiol., 30 (5): 49-53.

Google Scholar

[3] Radmacher E., Vaitsikova A., Burger U., Krumbach K., Sahm H., Eggeling L. (2002). Linking central metabolism with increase pathway flux: L-valine accumulation by Corynebacterium glutamicum. Appl. Environ. Microbiol., 68 (5): 2246-2250.

DOI: 10.1128/aem.68.5.2246-2250.2002

Google Scholar

[4] Liu H., Chen N., Wen T.Y. (2007). Pathway analysis for production of L-leucine by Corynebacterium glutamicum TK0303. Acta Microbiol. Sin., 47 (2): 249-253.

Google Scholar

[5] Liu X.X., Chen S.X., Chu J., Zhuang Y.P., Zhang S.L. (2004). Effect of sodium citrate on the growth metabolism and inosine accumulation by Bacillus subtilis. Acta Microbiol. Sin., 44 (5): 627-630.

Google Scholar

[6] Chen N., Du J., Liu H., Xu Q.Y. (2009). Elementary mode analysis and metabolic flux analysis of L-glutamate biosynthesis by Corynebacterium glutamicum. Annal Microbiol., 59 (2): 317-322.

DOI: 10.1007/bf03178334

Google Scholar

[7] Wittmann C., Kiefer P., Zelder O. (2004). Metabolic fluxes in Corynebacterium glutamicum during lysine production with sucrose as carbon source. Appl. Environ. Microbiol. 70 (12): 7277-7287.

DOI: 10.1128/aem.70.12.7277-7287.2004

Google Scholar

[8] Majewski R.A., Domach M.M. (1990). Simple constrained-optimization view of acetate overflow in E. coli. Biotechnol. Bioeng., 35 (7): 732-738.

DOI: 10.1002/bit.260350711

Google Scholar

[9] Eliakova V., Patek M., Holatko J., Nesvera J., Leyval D., Goergen J.L., Delaunay S. (2005). Feedback-resistant acetohydroxy acid synthase increases valine production in Corynebacterium glutamicum. Appl. Environ. Microbiol., 71 (1): 207-213.

DOI: 10.1128/aem.71.1.207-213.2005

Google Scholar

[10] Blombach B., Schreiner M.E., Bartek T., Oldiges M. (2008). Corynebacterium glutamicum tailored for high-yield L-valine production. Appl. Microbiol. Biotechnol., 79 (3): 471-479.

DOI: 10.1007/s00253-008-1444-z

Google Scholar