Tellurium Extraction from the Unique Independent Tellurium Ores in China by Bioleaching

Article Preview

Abstract:

This study was designed to investigate tellurium bioleaching from the unique independent low-grade tellurium ores containing tetradymite, joseite, pyrite, chalcopyrite, silica, and a minor amount of dolomite, which is the first discovered scattered element deposit in the world. For the bioleaching, the tellurium extractions from the low-grade ores by with and without the adapted bacteria of acidophilic Thiobacillus ferrooxidans were examined. The effects of pH, pulp density, and temperature for bioleaching were studied systematically. After 20 days of bioleaching at 30°C, an 80 % of the tellurium was extracted in laboratory study. Leaching kinetics indicated that diffusion through the product layer was the rate controlling process during tellurium bioleaching, and the relative activation energies during tellurium bioleaching stage was calculated to be 34.75 kJ/mol.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 343-344)

Pages:

625-630

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z. J. Xu, Ore deposite of the scattered element in Chinese encyclopaedia-Geology, Shanghai: Chinese Encyclopaedia Press, 1993, p.197.

Google Scholar

[2] J Z. Yin, Y. C. Chen, J. X. Zhou, B. C. Zhou, A review on global tellurium resources and discussion on the new discovery of the independent tellurium ores in Dashuiguo in Sichuan, China, Journal of Heibai Institute of Geolgogy, 1995, 18(4): 348-354.

Google Scholar

[3] M. A. Fernandez, M. Segarra, F. Espiell, Selective leaching of arsenic and antimony contained in the anode slimes from copper refining, Hydrometallurgy, 1996, 41: 255-267.

DOI: 10.1016/0304-386x(95)00061-k

Google Scholar

[4] P. Wu, Studies on hydrometallurgy of tetradymite, Journal of Nonferrous Metals (Extractive Metallargy), 2003, 23(5): 30-32.

Google Scholar

[5] H. Z. Liu, Y. K. Zhang, Y. G. Chui, Studies on the folotation for some palce of tetradymiteores, Journal of Nonferrous Metals (Extractive Metallargy), 1997, 17(4): 15-19.

Google Scholar

[6] L. Curreli, G. Loi, R. Peretti, G. Rossi, P. Trois, and A. Zucca, Gold recovery enhancement from complex sulfide ores through combined bioleaching and cyanidation. Minerals Engineering, 1997, 10(6): 561-576.

DOI: 10.1016/s0892-6875(97)00036-8

Google Scholar

[7] W. Krebs, C. Brombacher, P. P. Bosshard, R. Bachofen, and H. Brandl, Microbial recovery of metals from solid. FEMS Microbiology Reviews, 1997, 20: 605-617.

DOI: 10.1111/j.1574-6976.1997.tb00341.x

Google Scholar

[8] R. Poulin, R. W. Lawrence, Economic and environmental nicks of biohydro-metallurgy. Minerals Engineering, 1996, 9(8): 799-810.

Google Scholar

[9] M. O. Schrenk, K. J. Edwards, R. M. Goodman, R. J. Hamers, J. E. Banfield, Distribution of T. ferrooxidans and L. ferrooxidans: Implications for generation of acid mine drainage, Science, 1998, 279(6): 1519-1522.

DOI: 10.1126/science.279.5356.1519

Google Scholar

[10] T. Gehrke, J. Telegdi, D. Thierry, Importance of extracelluar polymeric substances from T. ferrooxidans for bioleaching, Applied and Environmental Microbiology, 1998, 64(7): 2743-2747.

DOI: 10.1128/aem.64.7.2743-2747.1998

Google Scholar

[11] T. L. Deng, M. X. Liao, M. H. Wang, Y. W. Chen, N. Belzile, Investigations of accelerating parameters for the biooxidation of low-grade refractory gold ores, Minerals Engineering,2000, 13 (14-15): 1543-1553.

DOI: 10.1016/s0892-6875(00)00137-0

Google Scholar

[12] T. L. Deng, M. X. Liao, Gold recovery from the refractory flotation concentrate combined biooxidation and thiourea leach, Hydrometallurgy, 2002, 63: 249-255.

DOI: 10.1016/s0304-386x(01)00226-2

Google Scholar

[13] M. X. Liao, T. L. Deng, Zinc and lead extraction from complex raw sulfides by sequential bioleaching and acidic brine leach, Minerals Engineering, 2004, 17(2): 17-22.

DOI: 10.1016/j.mineng.2003.09.007

Google Scholar

[14] T. L. Deng, M. X. Liao, M. Luo, Study on the megnetization effects to the growth activity for Thiobacillus ferrooxidans, A New Century International Conference on Metallurgical High Technology and New materials of Heavy Nonferrous Metals, Yunan, 2002, vol. 1, pp.184-187.

Google Scholar

[15] T. L. Deng, M. X. Liao, M. H. Wang, Y. W. Chen, N. Belzile, Enhancement of gold extraction from biooxidation residues using an acidic sodium sulfite-thiourea system, Minerals Engineering, 2001, 14(2): 2013-(2017).

DOI: 10.1016/s0892-6875(00)00181-3

Google Scholar

[16] M. H. Wang, T. L. Deng, M. X. Liao, Studies on the biooxidation for the refractory arsenic-containing gold ores, Applied Chemistry, 2000, 17(4): 362-365.

Google Scholar

[17] M. P. Silverman, D. G. Lundgren, Studies on the chemoautotrophic iron bacterium Thiobacillus ferrooxidans I. An improved medium and a harvesting procedure for securing high cell yields. Journal of Bacteriology, 1959, 77(2): 642-647.

DOI: 10.1128/jb.77.5.642-647.1959

Google Scholar

[18] G. R. Chaudhury, R. P. Das, Bacterial leaching complex sulfides of copper, lead and zinc. International Journal of Mineral Processing, 1987, 21(1): 57-64.

DOI: 10.1016/0301-7516(87)90005-6

Google Scholar

[19] D. Chen, Rapid determination method for biomass of Thiobacillus ferrooxidans and its oxidative activity. Guowai Jinshukuan Xuankuan (Metal Seperation in Abroad), 1997, 5(1): 28-30.

Google Scholar

[20] F. Habashi, Principles of extractive metallurgy. Plenum Press, London, 1969, pp.153-163.

Google Scholar