Association of Prkag3 Gene Polymorphisms with Meat Quality Traits in Chinese Meat-Type Quality Chicken Populations

Article Preview

Abstract:

In this study, we aimed to detect the single nucleotide polymorphism (SNPs) of the chicken PRKAG3 gene and discern the potential association with meat quality traits. A total of 240 meat-type quality chickens were screened by using single-strand conformational polymorphism analysis (SSCP) and DNA sequencing. Two SNPs (g.1744G>C and g.3207A>G) were identified in chicken PRKAG3 with medium polymorphism (0.25C were significantly associated with water content, crude protein, and crude ash (P<0.05/0.01). The SNP genotypes g.3207A>G were significantly associated with water content, and crude protein (P<0.01). The results suggested that PRKAG3 gene is potential major genes or is in close linkage disequilibrium with the QTL affecting meat quality traits in this population of chickens.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 343-344)

Pages:

631-636

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Rance, G. McEntee and R. McDevitt, Genetic and phenotypic relationships between and within support and demand tissues in a single line of broiler chicken, Brit Poult Sci, vol. 43(4), 2002, pp.518-527.

DOI: 10.1080/0007166022000004426

Google Scholar

[2] C. D. Allen, D. L. Fletcher, J. K. Northcutt and S. M. Russell, The relationship of broiler breast color to meat quality and shelf-life, Poult Sci, vol. 77(2), 1998, pp.361-366.

DOI: 10.1093/ps/77.2.361

Google Scholar

[3] C. D. Allen, S. M. Russell and D. L. Fletcher, The relationship of broiler breast meat color and pH to shelf-life and odor development, Poult Sci, vol. 76(7), 1997, pp.1042-1046.

DOI: 10.1093/ps/76.7.1042

Google Scholar

[4] D. Marshall, Genetics of meat quality, The Genetics of Cattle. CABI. Wallingford, Oxon, UK, 1999, pp.605-636.

Google Scholar

[5] E. M. Heifetz, J. E. Fulton, N. O'Sullivan, H. Zhao, J. C. Dekkers and M. Soller, Extent and consistency across generations of linkage disequilibrium in commercial layer chicken breeding populations, Genetics, vol. 171(3), 2005, pp.1173-1181.

DOI: 10.1534/genetics.105.040782

Google Scholar

[6] D. Ciobanu, J. Bastiaansen, M. Malek, J. Helm, J. Woollard, G. Plastow and M. Rothschild, Evidence for new alleles in the proteinkinase adenosine monophosphate activated gamma(3)-subunit gene associated with low glycogen content in pig skeletal muscle and improved meat quality, Genetics, vol. 159(3), 2001, pp.1151-1162.

DOI: 10.1093/genetics/159.3.1151

Google Scholar

[7] M. Roux, A. Nizou, L. Forestier, A. Ouali, H. Leveziel and V. Amarger, Characterization of the bovine PRKAG3 gene: structure, polymorphism, and alternative transcripts, Mamm Genome, vol. 17(1), 2006, pp.83-92.

DOI: 10.1007/s00335-005-0093-0

Google Scholar

[8] D. Milan, J. T. Jeon, C. Looft, V. Amarger, A. Robic, M. Thelander, C. Rogel-Gaillard, S. Paul, N. Iannuccelli, L. Rask, H. Ronne, K. Lundstrom, N. Reinsch, J. Gellin, E. Kalm, P. L. Roy, P. Chardon and L. Andersson, A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle, Science, vol. 288(5469), 2000, pp.1248-1251.

DOI: 10.1126/science.288.5469.1248

Google Scholar

[9] L. Andersson and M. Georges, Domestic-animal genomics: deciphering the genetics of complex traits, Nat Rev Genet, vol. 5(3), 2004, pp.202-212.

DOI: 10.1038/nrg1294

Google Scholar

[10] Z. R. Zhang, Y. P. Liu, X. Jiang, H. R. Du and Q. Zhu, Study on association of single nucleotide polymorphism of CAPN1 gene with muscle fibre and carcass traits in quality chicken populations, J Anim Breed Genet, vol. 125(4), 2008, pp.258-264.

DOI: 10.1111/j.1439-0388.2008.00723.x

Google Scholar

[11] M. krlep, M. andek-Potokar, T. Kavar, B. egula, V. Sant¨¦-Lhoutellier and P. Gou, Investigating PRKAG3 polymorphisms for traits of interest in dry ham production, Acta Agric. Slo, vol. 2, 2008, pp.93-98.

Google Scholar

[12] A.S. Deshmukh, S. Glund, R.Z. Tom and J.R. Zierath, Role the AMPK gamma3 isoform in hypoxia-stimulated glucose transport in glycolytic skeletal muscle, Am J Physiol Endocrinol Metab, vol. 297(6), 2009, pp. E1388-1394.

DOI: 10.1152/ajpendo.00125.2009

Google Scholar

[13] C. Bernard, I. Cassar-Malek, M. Le Cunff, H. Dubroeucq, G. Renand and J. F. Hocquette, New indicators of beef sensory quality revealed by expression of specific genes, J Agric Food Chem, vol. 55(13), 2007, pp.5229-5237.

DOI: 10.1021/jf063372l

Google Scholar

[14] M. Roux, A. Nizou, L. Forestier, A. Ouali, H. Lev¨¦ziel and V. Amarger, Characterization of the bovine PRKAG3 gene: structure, polymorphism, and alternative transcripts, Mammalian genome, vol. 17(1), 2006, pp.83-92.

DOI: 10.1007/s00335-005-0093-0

Google Scholar

[15] S. Yu, J. Kim, H. Chuang, K. Jung, Y. Lee, D. Yoon, S. Lee, I. Choi, C. Bottema and B. Sang, Molecular cloning and characterization of bovine PRKAG3 gene: structure, expression and single nucleotide polymorphism detection, J Anim Breed Genet, vol. 122(5), 2005, pp.294-301.

DOI: 10.1111/j.1439-0388.2005.00545.x

Google Scholar