[1]
K. Rance, G. McEntee and R. McDevitt, Genetic and phenotypic relationships between and within support and demand tissues in a single line of broiler chicken, Brit Poult Sci, vol. 43(4), 2002, pp.518-527.
DOI: 10.1080/0007166022000004426
Google Scholar
[2]
C. D. Allen, D. L. Fletcher, J. K. Northcutt and S. M. Russell, The relationship of broiler breast color to meat quality and shelf-life, Poult Sci, vol. 77(2), 1998, pp.361-366.
DOI: 10.1093/ps/77.2.361
Google Scholar
[3]
C. D. Allen, S. M. Russell and D. L. Fletcher, The relationship of broiler breast meat color and pH to shelf-life and odor development, Poult Sci, vol. 76(7), 1997, pp.1042-1046.
DOI: 10.1093/ps/76.7.1042
Google Scholar
[4]
D. Marshall, Genetics of meat quality, The Genetics of Cattle. CABI. Wallingford, Oxon, UK, 1999, pp.605-636.
Google Scholar
[5]
E. M. Heifetz, J. E. Fulton, N. O'Sullivan, H. Zhao, J. C. Dekkers and M. Soller, Extent and consistency across generations of linkage disequilibrium in commercial layer chicken breeding populations, Genetics, vol. 171(3), 2005, pp.1173-1181.
DOI: 10.1534/genetics.105.040782
Google Scholar
[6]
D. Ciobanu, J. Bastiaansen, M. Malek, J. Helm, J. Woollard, G. Plastow and M. Rothschild, Evidence for new alleles in the proteinkinase adenosine monophosphate activated gamma(3)-subunit gene associated with low glycogen content in pig skeletal muscle and improved meat quality, Genetics, vol. 159(3), 2001, pp.1151-1162.
DOI: 10.1093/genetics/159.3.1151
Google Scholar
[7]
M. Roux, A. Nizou, L. Forestier, A. Ouali, H. Leveziel and V. Amarger, Characterization of the bovine PRKAG3 gene: structure, polymorphism, and alternative transcripts, Mamm Genome, vol. 17(1), 2006, pp.83-92.
DOI: 10.1007/s00335-005-0093-0
Google Scholar
[8]
D. Milan, J. T. Jeon, C. Looft, V. Amarger, A. Robic, M. Thelander, C. Rogel-Gaillard, S. Paul, N. Iannuccelli, L. Rask, H. Ronne, K. Lundstrom, N. Reinsch, J. Gellin, E. Kalm, P. L. Roy, P. Chardon and L. Andersson, A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle, Science, vol. 288(5469), 2000, pp.1248-1251.
DOI: 10.1126/science.288.5469.1248
Google Scholar
[9]
L. Andersson and M. Georges, Domestic-animal genomics: deciphering the genetics of complex traits, Nat Rev Genet, vol. 5(3), 2004, pp.202-212.
DOI: 10.1038/nrg1294
Google Scholar
[10]
Z. R. Zhang, Y. P. Liu, X. Jiang, H. R. Du and Q. Zhu, Study on association of single nucleotide polymorphism of CAPN1 gene with muscle fibre and carcass traits in quality chicken populations, J Anim Breed Genet, vol. 125(4), 2008, pp.258-264.
DOI: 10.1111/j.1439-0388.2008.00723.x
Google Scholar
[11]
M. krlep, M. andek-Potokar, T. Kavar, B. egula, V. Sant¨¦-Lhoutellier and P. Gou, Investigating PRKAG3 polymorphisms for traits of interest in dry ham production, Acta Agric. Slo, vol. 2, 2008, pp.93-98.
Google Scholar
[12]
A.S. Deshmukh, S. Glund, R.Z. Tom and J.R. Zierath, Role the AMPK gamma3 isoform in hypoxia-stimulated glucose transport in glycolytic skeletal muscle, Am J Physiol Endocrinol Metab, vol. 297(6), 2009, pp. E1388-1394.
DOI: 10.1152/ajpendo.00125.2009
Google Scholar
[13]
C. Bernard, I. Cassar-Malek, M. Le Cunff, H. Dubroeucq, G. Renand and J. F. Hocquette, New indicators of beef sensory quality revealed by expression of specific genes, J Agric Food Chem, vol. 55(13), 2007, pp.5229-5237.
DOI: 10.1021/jf063372l
Google Scholar
[14]
M. Roux, A. Nizou, L. Forestier, A. Ouali, H. Lev¨¦ziel and V. Amarger, Characterization of the bovine PRKAG3 gene: structure, polymorphism, and alternative transcripts, Mammalian genome, vol. 17(1), 2006, pp.83-92.
DOI: 10.1007/s00335-005-0093-0
Google Scholar
[15]
S. Yu, J. Kim, H. Chuang, K. Jung, Y. Lee, D. Yoon, S. Lee, I. Choi, C. Bottema and B. Sang, Molecular cloning and characterization of bovine PRKAG3 gene: structure, expression and single nucleotide polymorphism detection, J Anim Breed Genet, vol. 122(5), 2005, pp.294-301.
DOI: 10.1111/j.1439-0388.2005.00545.x
Google Scholar