[1]
Lunney JK,Advances in swine biomedical model genomics[J],Int J Biol Sci., 2007 , 3(3), pp.179-184.
Google Scholar
[2]
Prather RS, Hawley RJ, Carter DB, Lai L, Greenstein JL, Transgenic swine for biomedicine and agriculture[J], Theriogenology, 2003 , 59(1), pp.115-123.
DOI: 10.1016/s0093-691x(02)01263-3
Google Scholar
[3]
Niemann H, Rath D, Wrenzycki C, Advances in biotechnology: new tools in future pig production for agriculture and biomedicine[J], Reprod Domest Anim, 2003 , 38(2), pp.82-89.
DOI: 10.1046/j.1439-0531.2003.00409.x
Google Scholar
[4]
Watanabe S, Iwamoto M, Suzuki S, Fuchimoto D, Honma D, Nagai T, Hashimoto M et al, A novel method for the production of transgenic cloned pigs: electroporation-mediated gene transfer to non-cultured cells and subsequent selection with puromycin[J], Biol Reprod, 2005, 72(2), pp.309-315.
DOI: 10.1095/biolreprod.104.031591
Google Scholar
[5]
Lai L, Kolber-Simonds D, Park KW, Cheong HT, Greenstein JL, Im GS, Samuel M, et al, Production of alpha-1, 3-galactosyltransferase knockout pigs by nuclear transfer cloning[J], Science, 2002 , 295(5557), pp.1089-1092.
DOI: 10.1126/science.1068228
Google Scholar
[6]
Dai Y, Vaught TD, Boone J, Chen SH, Phelps CJ, Ball S, et al, Targeted disruption of the 1, 3-gal actosyltransferase gene incloned pigs[J], Nat Biotechnol , 2002, 20, p.252–255.
Google Scholar
[7]
Phelps CJ, Koike C, Vaught TD, Boone J, Wells KD, Chen SH, et al, Production of alpha 1, 3-galactosyltransferase-deficient pigs[J], Science, 2003, 299(5605), pp.411-414.
DOI: 10.1126/science.1078942
Google Scholar
[8]
Macháty Z, Day BN, Prather RS, Development of early porcine embryos in vitro and in vivo[J], Biol Reprod, 1998 , 59(2), pp.451-455.
DOI: 10.1095/biolreprod59.2.451
Google Scholar
[9]
Sturmey RG, Leese HJ, Energy metabolism in pig oocytes and early embryos[J], Reproduction, 2003 , 126(2), pp.197-204.
DOI: 10.1530/rep.0.1260197
Google Scholar
[10]
Houghton FD, Thompson JG, Kennedy CJ, Leese HJ, Oxygen consumption and energy metabolism of the early mouse embryo[J], Mol Reprod Dev, 1996 , 44(4), pp.476-485.
DOI: 10.1002/(sici)1098-2795(199608)44:4<476::aid-mrd7>3.0.co;2-i
Google Scholar
[11]
Kikuchi K, Onishi A, Kashiwazaki N, Iwamoto M, Noguchi J, Kaneko H, et al, Successful piglet production after transfer of blastocysts produced by a modified in vitro system[J], Biol Reprod, 2002 , 66(4), pp.1033-1041.
DOI: 10.1095/biolreprod66.4.1033
Google Scholar
[12]
Flood MR, Wiebold JL, Glucose metabolism by preimplantation pig embryos[J], J Reprod Fertil, 1988 , 84(1), pp.7-12.
DOI: 10.1530/jrf.0.0840007
Google Scholar
[13]
Schini SA, Bavister BD, Two-cell block to development of cultured hamster embryos is caused by phosphate and glucose[J], Biol Reprod, 1988 , 39(5), pp.1183-1192.
DOI: 10.1095/biolreprod39.5.1183
Google Scholar
[14]
Gandhi AP, Lane M, Gardner DK, Krisher RL, Substrate utilization in porcine embryos cultured in NCSU23 and G1. 2/G2. 2 sequential culture media[J], Mol Reprod Dev, 2001, 58(3), pp.269-275.
DOI: 10.1002/1098-2795(200103)58:3<269::aid-mrd4>3.0.co;2-l
Google Scholar
[15]
Yoshioka K, Suzuki C, Tanaka A, Anas IM, Iwamura S, Birth of piglets derived from porcine zygotes cultured in a chemically defined medium[J], Biol Reprod, 2002 , 66(1), pp.112-119.
DOI: 10.1095/biolreprod66.1.112
Google Scholar
[16]
Thompson JG, Simpson AC, Pugh PA, Tervit HR, Requirement for glucose during in vitro culture of sheep preimplantation embryos[J], Mol Reprod , 1992 , 31(4), pp.253-257.
DOI: 10.1002/mrd.1080310405
Google Scholar
[17]
Houghton FD, Thompson JG, Kennedy CJ, Leese HJ, Oxygen consumption and energy metabolism of the early mouse embryo[J], Mol Reprod , 1996 , 44(4), pp.476-485.
DOI: 10.1002/(sici)1098-2795(199608)44:4<476::aid-mrd7>3.0.co;2-i
Google Scholar
[18]
Rieger D, Relationship between energy metabolism and development of early mammalian embryos[J], Theriogenology, 1992, 37(1), pp.75-93.
DOI: 10.1016/0093-691x(92)90248-p
Google Scholar
[19]
Park Y, Hong J, Yong H, Lim J, Lee E, Effect of exogenous carbohydrates in a serum-free culture medium on the development of in vitro matured and fertilized porcine embryos[J], Zygote, 2005 , 13(3), pp.269-275.
DOI: 10.1017/s0967199405003369
Google Scholar
[20]
Kim HS, Lee GS, Hyun SH, Lee SH, Nam DH, Jeong YW, et al, Improved in vitro development of porcine embryos with different energy substrates and serum[J], Theriogenology, 2004 , 61(7-8), pp.1381-1393.
DOI: 10.1016/j.theriogenology.2003.08.012
Google Scholar
[21]
Wilding M, Fiorentino A, De Simone ML, Infante V, De Matteo L, Marino M, et al, Energy substrates, mitochondrial membrane potential and human preimplantation embryo division[J], Reprod Biomed Online, 2002 , 5(1), pp.39-42.
DOI: 10.1016/s1472-6483(10)61595-7
Google Scholar
[22]
Lane M, Gardner DK, Lactate regulates pyruvate uptake and metabolism in the preimplantation mouse embryo[J], Biol Reprod, 2000 , 62(1), pp.16-22.
Google Scholar
[23]
Benos DJ, Balaban RS, Current topic: transport mechanisms in preimplantation mammalian embryos[J], Placenta, 1990 , 11(5), pp.373-380.
DOI: 10.1016/s0143-4004(05)80213-9
Google Scholar