Simple Sequence Repeat (SSR) Polymorphisms and Population Genetics in Sichuan Wild Rhesus Macaques

Article Preview

Abstract:

Cross-species amplification of twenty-five SSR loci from the DNA of five rhesus macaques of diverse regional origins was conducted using human primers for the polymerase chain reaction (PCR). Seven of these primer pairs, which consistently and unambiguously amplified polymorphic fragments from these five samples, were also used to amplify SSR loci for 111 Sichuan wild rhesus macaques of five different populations. The analysed microsatellite markers produced 109 alleles, varied from 4 to 16 alleles each locus. The number of alleles per population ranged from 6.79 to 11.38. Polymorphic information content showed that all seven loci were highly informative (mean = 0.9017±0.0166, >0.5). The average observed heterozygosity was less than the expected (mean = 0.6795 and mean = 0.8559, respectively). Genetic differentiation among the populations was considerably low with the overall and pairwise FST values (mean = 0.0375), and showed fairly low level of inbreeding (indicated by a mean FIS value of 0. 0.1991). Maintaining genetic diversity is a major issue in conservation biology. In comparison to other captive Macaca mulatta studies, these wild rhesus macaque populations showed a relatively high level of genetic diversity, and there was low gene flow among these populations. Careful genetic management is important for maintaining genetic variability levels. None of the seven informative loci are linked which screened in this study can be applied in future studies on population and conservation genetics of natural primate populations.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 343-344)

Pages:

690-697

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Satkoski, R. Malhi, S. Kanthaswamy, R. Tito, V. Malladi et al., pyrosequencing as a method for SNP identification in the rhesus macaque(Macaca mulatta),. BMC genomics 9: 256, (2008).

DOI: 10.1186/1471-2164-9-256

Google Scholar

[2] S. O'connor, A. Blasky, C. Pendley, E. Becker, R. Wiseman et al., Comprehensive characterization of MHC class II haplotypes in Mauritian cynomolgus macaques,. Immunogenetics 59: 449-462, (2007).

DOI: 10.1007/s00251-007-0209-7

Google Scholar

[3] D.G. Smith, and J. Mcdonough, Mitochondrial DNA variation in Chinese and Indian rhesus macaques (Macaca mulatta),. Am J Primatol 65: 1-25, (2005).

DOI: 10.1002/ajp.20094

Google Scholar

[4] D. Smith, Genetic heterogeneity in five captive specific pathogen-free groups of rhesus macaques. Laboratory animal science, 44: 200, (1994).

Google Scholar

[5] D. Smith, S. Kanthaswamy, J. Viray and L. Cody, Additional highly polymorphic microsatellite(STR) loci for estimating kinship in rhesus macaques(Macaca mulatta),. American Journal of Primatology 50: 1-7, (2000).

DOI: 10.1002/(sici)1098-2345(200001)50:1<1::aid-ajp1>3.0.co;2-t

Google Scholar

[6] J.A. Karl, R.W. Wiseman, K.J. Campbell, et al. Identification of MHC class I sequences in Chinese-origin rhesus macaques. Immunogenetics, 60(1): 37-46, (2008).

DOI: 10.1007/s00251-007-0267-x

Google Scholar

[7] X. Ma, L.H. Tang, L.B. Qu, et al. Identification of 17 novel major histocompatibility complex-A alleles in a population of Chinese-origin rhesus macaques,. Tissue Antigens, 73(2): 184-187, (2009).

DOI: 10.1111/j.1399-0039.2008.01168.x

Google Scholar

[8] R. Malhi, B. Sickler, D. Lin, et al. MamuSNP: a resource for Rhesus Macaque (Macaca mulatta) genomics,. PLoS ONE, 2(5), (2007).

DOI: 10.1371/journal.pone.0000438

Google Scholar

[9] J. Satkoski, D. George, D. Smith and S. Kanthaswamy, a Genetic characterization of wild and captive rhesus macaques in China,. Journal of Medical Primatology 37: 67-80, 2008a.

DOI: 10.1111/j.1600-0684.2007.00228.x

Google Scholar

[10] K. Scribner, J. Arntzen, N. Cruddace, R. Oldham and T. Burke, Environmental correlates of toad abundance and population genetic diversity,. Biological Conservation 98: 201-210, (2001).

DOI: 10.1016/s0006-3207(00)00155-5

Google Scholar

[11] D. Tautz, Hypervariability of simple sequences as a general source for polymorphic DNA markers,. Nucleic Acids Res 17: 6463–6471, (1989).

DOI: 10.1093/nar/17.16.6463

Google Scholar

[12] J. Weber, and P. May, Abundant class of human DNA polymorphism which can be typed using the polymerase chain reaction,. Am J Hum Genet 44: 388-396, (1989).

Google Scholar

[13] J. Sambrook, E. F. Fritsch and T. Maniatis, Molecular cloning, a laboratory manual. New York: Cold Spring Harbor Laboratory Press, (1989).

DOI: 10.1002/jobm.19840240107

Google Scholar

[14] H. Tegelström, Mitochondrial DNA in natural populations: an improved routine for the screening of genetic variation based on sensitive silver staining,. Electrophoresis 7: 226-229, (1986).

DOI: 10.1002/elps.1150070508

Google Scholar

[15] B. Weir, and C. Cockerham, Estimating F-statistics for the analysis of population structure,. Evolution 38: 1358-1370, (1984).

DOI: 10.1111/j.1558-5646.1984.tb05657.x

Google Scholar

[16] M. Raymond, and F. Rousset, GENEPOP (version 3. 3): population genetics software for exact tests and ecumenicism,. Journal of Heredity 86: 248-249, (1995).

DOI: 10.1093/oxfordjournals.jhered.a111573

Google Scholar

[17] K. Liu, and S. Muse, PowerMarker: new genetic data analysis software., Bioinformatics 21: 2128-2129, (2004).

Google Scholar

[18] S. Guo, and E. Thompson, A Monte Carlo method for combined segregation and linkage analysis,. American Journal of Human Genetics 51: 1111, (1992).

Google Scholar

[19] M. Nei. Molecular evolutionary genetics [M],. New York: Columbia Univ. Press, (1987).

Google Scholar

[20] M. Slarkin, Gene flow in natural populations,. Annual review of ecology and systematics 16: 393-430, (1985).

DOI: 10.1146/annurev.es.16.110185.002141

Google Scholar

[21] M. Raymond, and F. Rousset, An exact test for population differentiation,. Evolution: 1280-1283, (1995).

DOI: 10.1111/j.1558-5646.1995.tb04456.x

Google Scholar

[22] S. Moore, L. Sargeant, T. King, J. Mattick, M. Georges et al, The conservation of dinucleotide microsatellites among mammalian genomes allows the use of heterologous PCR primer pairs in closely related species,. Genomics 10: 654-660, (1991).

DOI: 10.1016/0888-7543(91)90448-n

Google Scholar

[23] A. Perelygin, C. Kammerer, N. Stowell and J. Rogers, Conservation of human chromosome 18 in baboons (Papio hamadryas): a linkage map of eight human microsatellites,. Cytogenetic and Genome Research 75: 207-209, (1996).

DOI: 10.1159/000134484

Google Scholar

[24] P. Morin , S. Kanthaswamy and D. Smith, Simple sequence repeat (SSR) polymorphisms for colony management and population genetics in rhesus macaques (Macaca mulatta),. American journal of primatology 42: 199-213, (1997).

DOI: 10.1002/(sici)1098-2345(1997)42:3<199::aid-ajp3>3.0.co;2-s

Google Scholar

[25] J. Cohen, AIDS research shifts to immunity,. Science (New York, NY) 257: 152, (1992).

Google Scholar

[26] D. Botstein, R. Whitehite, M. Skolnick and R. Davis, Construction of a genetic linkage map in man using restriction fragment length polymorphisms,. American Journal of Human Genetics 32: 314, (1980).

Google Scholar

[27] S. Vallian, and H. Moeini, Genotyping of Five Polymorphic STR Loci in Iranian Province of Isfahan. Journal of Sciences, Islamic Republic of Iran 17: 113-117, (2006).

Google Scholar

[28] J. Pemberton, J. Slate, D. Bancroft and J. Barrett, Nonamplifying alleles at microsatellite loci: a caution for parentage and population studies,. Molecular Ecology 4: 249-252, (1995).

DOI: 10.1111/j.1365-294x.1995.tb00214.x

Google Scholar

[29] V. Lucchini, A. Galov and E. Randi, Evidence of genetic distinction and long-term population decline in wolves (Canis lupus) in the Italian Apennines,. Molecular Ecology 13: 523-536, (2004).

DOI: 10.1046/j.1365-294x.2004.02077.x

Google Scholar

[30] M. Slatkin, Rare alleles as indicators of gene flow,. Evolution 39: 53-65, (1985).

DOI: 10.1111/j.1558-5646.1985.tb04079.x

Google Scholar

[31] F. Allendorf, Isolation, gene flow, and genetic differentiation among populations,. Genetics and conservation: 51-65, (1983).

Google Scholar

[32] B. Su, Y. Fu, Y. Wang, L. Jin and R. Chakraborty, Genetic diversity and population history of the red panda (Ailurus fulgens) as inferred from mitochondrial DNA sequence variations,. Molecular Biology and Evolution 18: 1070, (2001).

DOI: 10.1093/oxfordjournals.molbev.a003878

Google Scholar

[33] P. Olney, G. Mace and A. Feistner, Creative conservation: interactive management of wild and captive animals,. Kluwer Academic Publishers, (1994).

DOI: 10.1007/978-94-011-0721-1

Google Scholar