[1]
R. G. Alscher. Biosynthesis and antioxidant function of glutathione in plants, Physiol. Plant, 1989, 77, p.457–464.
DOI: 10.1111/j.1399-3054.1989.tb05667.x
Google Scholar
[2]
F. Droog., Plant Glutathione S-Transferases, a Tale of Theta and Tau. J, Plant Growth Regul, 1997, 16, p.95–107.
DOI: 10.1007/pl00006984
Google Scholar
[3]
K. B. Mannervi, U. H. Danielson. Glutathione transferases: structure and catalytic, Crc. Crit. Rev. Biochem, 1998, 23, pp.283-337.
Google Scholar
[4]
C. Pickett, B. Luayh. Glutathione S-transferases: gene structure, regulation and biological function. Anna. Rev. Biochem, 1989, 58, pp.743-764.
DOI: 10.1146/annurev.bi.58.070189.003523
Google Scholar
[5]
R. C. Farey, A. R. Sundquist. Biologically important thiol-disulfide reactions and the role of cysteine in proteins: an evolution-ary perspective. Adv. Enzymol. Relat. Aread. Mol. Biol. 1991, 64, pp.1-53.
Google Scholar
[6]
F. N. J. Droog, P. J. J. Hooykaas, B. J. VanderZaal. 2, 4-Dichlorophen-oxyacetic acid and realated chlorinated compounds inhibit two auxin-regulated type-III tabacco glutathione S-trandferases. Plant Physical, 1995, 107, pp.1139-1146.
DOI: 10.1104/pp.107.4.1139
Google Scholar
[7]
A. Fluryt, K. D. Damd. 2, 4-D-inducibleS-transferase from soybean (Glycinemax), Purification, Characteristion and Induction. Planta. 1995, 94, pp.312-318.
Google Scholar
[8]
J.X. Li, G. R. Sun, X. F. Yan. Study of Physiological Ecology of Plant in Saline Grassland on Songnen Plain. Northeast Forestry University Press, Harbin, 1996, pp.23-55.
Google Scholar
[9]
X.F. Yan, G.R. Sun. Study of Physiological Ecology of Puccinellia tenuiflora, Science Press, Beijing, 2000, pp.81-85.
Google Scholar
[10]
G. R. Sun, X. F. Yan, W. Xiao. Effect of sodium carbonate domestication progressively on alkaline resistance of seedlings of Puccinellia tenuiflora. J. Wuhan Bot. Res, 1996, 14 (1), pp.67-40.
Google Scholar
[11]
G. R. Sun, X. F. Yan, J. Li. Effects of the growth of cultivated Puccinellia tenuiflora on physical characteristics of alkali soil. Acta Agrestia Sin, 2002, 10, pp.118-123.
Google Scholar
[12]
G. R. Sun, X. F. Yan, J. Li. Effects of the growth of cultivated Puccinellia tenuiflora on chemical characteristics of alkali soil. Acta Agrestia Sin, 2002, 10, pp.179-184.
Google Scholar
[13]
X. F. Yan, G. R. Sun, J. L. Li, J. X. Li. Diurnal changes of photosynthesis and transpiration of manually planting Puccinellia tenuiflora. Bull. Bot. Res. 1995, 15, pp.252-255.
Google Scholar
[14]
X. F. Yan, G. R. Sun, W. Xiao. The relationship between diurnal changes of photosynthesis and transpiration of Puccinellia tenuiflora and the climate factors. Bull. Bot. Res. 1996, 16, pp.477-484.
Google Scholar
[15]
X. F. Yan, G. R. Sun, W. Xiao. Seasonal changes of photosynthetic and transpiration characters of Puccinellia tenuiflora. Bull. Bot. Res. 1996, 16, pp.340-345.
Google Scholar
[16]
X. F. Yan, G. R. Sun, W. Xiao. The relationships between seasonal changes of photosynthesis and transpiration of Puccinellia tenuiflora and the climate factors. Bull. Bot. Res. 1997, 17, pp.325-331.
Google Scholar
[17]
X. F. Yan, G. R. Sun, W. Xiao. A comparatives study on photosynthetic abilities of Puccinellia tenuiflora of different grown years. Acta Phytoecolog ica Sin, 1998, 22, pp.231-236.
Google Scholar
[18]
X. F. Yan, G. R. Sun, J. Li, W. Xiao. Changes of several osmotica in Puccinellia tenuiflora seedling under alkali salt stress, Bull. Bot. Res. 1999, 19, pp.347-355.
Google Scholar
[19]
G. R. Sun, X. F. Yan. Effect of salt stress on photosynthetic characters of seedlings of Puccinellia tenuiflora. Bull. Bot. Res. 1996, 16, pp.346-350.
Google Scholar
[20]
G. R. Sun, X. F. Yan, W. Xiao. Preliminary study on physiological mechanism of saline-Alkali tolerance of Puccinellia tenuiflora. J. Wuhan Bot. Res. 1997, 15 (2), pp.162-166.
Google Scholar
[21]
G. R. Sun, Y. Guan, X. F. Yan. Effect of sodium carbonate stress on amino acid contents of Puccinellia tenuiflora seedlings. Bull. Bot. Res. 2000, 20 (1), pp.69-72.
Google Scholar
[22]
G. R. Sun, Y. Guan, X. F. Yan. Effect of Na2CO3 Stress on Defensive Enzyme System of Puccinellia tenuiflora Seedlings. Acta Agrestia Sin. 2001, 9 (1), pp.34-38.
Google Scholar
[23]
X. X. Wu, H. M. Gao, B. Zhang, P. Xu, Y. Zhang, G. R. Sun. Relationship of defensive enzymes and active oxygen of Puccinellia tenuiflora seedlings under Na2CO3 weak stress. Acta prataculturae Sin. 2004, 13(6), pp.87-91.
Google Scholar
[24]
G. R. Sun, Y. Z. Peng, H. B. Shao, L. Y. Chu, H. Y. Min, W. Z. Cao, C. X. Wei. Do Puccinelia tenuiflora have the ability of salt exudation? Colloids and Surfaces B: Biointerfaces. 2005, 46(4), pp.197-203.
DOI: 10.1016/j.colsurfb.2005.11.003
Google Scholar
[25]
Y. X. Wang, G. R. Sun, J. B. Wang, W. Z. Cao, J. S. Liang, Z. Z. Yu, Z. H. Lu. Relationships among MDA content, plasma membrane permeability and the chlorophyll fluorescence parameters of Puccinellia tenuiflora seedlings under NaCl stress. Acta Ecol. Sin. 2006, 26(1), pp.122-129.
Google Scholar
[26]
J. B. Wang, G. R. Sun, G. Chen, W. Z. Cao, J. S. Liang, Z. Z. Yu, Z. H. Lu. The relationship between light energy utilization and dissipation of PSII of Puccinellia tenuiflora seedlings and osmotic potential of culture solution under Na2CO3 stress. Acta Ecol. Sin. 2006, 26(1), pp.115-121.
Google Scholar
[27]
M. L. Dionisio-Sese, T. Satoshi. Antioxidant response of rice seedlings to salinity stress. Plant Sci. 1998, 135, pp.1-9.
DOI: 10.1016/s0168-9452(98)00025-9
Google Scholar
[28]
R. K. Sairam, G. C. Srivastava, Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci. 2002, 162, pp.897-904.
DOI: 10.1016/s0168-9452(02)00037-7
Google Scholar
[29]
M.M. Bradford. A rapid and sensitive method for the quantition of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 1976, 72 (1-2), pp.248-254.
DOI: 10.1016/0003-2697(76)90527-3
Google Scholar
[30]
D. G. Davis, H. R. Swanson. Activity of stress-related enzymes in the perennial weed leafy spurge (Euphorbia esula L. ). Environ. Exp. Bot. 2001, 46, pp.95-108.
DOI: 10.1016/s0098-8472(01)00081-8
Google Scholar
[31]
A. G. Wang, G. H. Luo. Quantitative relation between the reaction of hydroxylamine and superoxide amion radicals in plants. Plant physiol. Communication. 1990, 26(6), pp.55-57.
Google Scholar
[32]
I. Apostel, P. F. Heinstein, P. S. Low. Rapid stimulation of an oxidative burst during elicitation of cultured plant cells. Plant Physiol. 1989, 90, pp.109-116.
DOI: 10.1104/pp.90.1.109
Google Scholar
[33]
N. Doke, Y. Ohashi. Involvement of an O2-. generating system in the induction of necrotic lesions on tobacco leaves infected with tobacco mosaic virus. Physiol. Mol. Plant Pathol. 1988, 32, pp.163-175.
DOI: 10.1016/s0885-5765(88)80013-4
Google Scholar
[34]
L. Legendre, S. Rueter, P.F. Heinstein, P.S. Low. Characterization of the oligogalacturonide-induced oxidative burst in cultured soybean (Glycine max) cells. Plant Physiol. 1993, 102, pp.233-240.
DOI: 10.1104/pp.102.1.233
Google Scholar
[35]
M. C. Mehdy. Active oxygen species in plant defense against pathogens. Plant Physiol. 1994, 105, pp.467-472.
DOI: 10.1104/pp.105.2.467
Google Scholar
[36]
D. Bartling, R. Radzio, U. Steiner, E.W. Weiler. Glutathione S-transferase with glutathione-peroxidase activity from Arabidopsis thaliana. Eur. J. Biochem. 1993, 216, pp.579-586.
DOI: 10.1111/j.1432-1033.1993.tb18177.x
Google Scholar
[37]
K. M. Chen, H. J. Gong, S. M. Wang. Glutathione metabolism and environmental stresses in plants. Acta Bot. Boreal. –Occident. Sin. 2004, 24(6), pp.1119-1130.
Google Scholar