The Function of Chloroplast GST of Puccinellia Tenuiflora Seedling Leaves in Resistance to Na2CO3 Stress

Article Preview

Abstract:

In order to probe into orderliness changes of Glutathione S-Transferase (GST) of chloroplast of Puccinellia tenuiflora seedlings under Na2CO3 stress and its function in resistance to Na2CO3 stress, relative electric conductance, GST activity and the O2-.produce rate of the chloroplast, and the osmotic potential of leaves, and the osmotic potential of culture solution of P. tenuiflora seedlings under different Na2CO3 stress were concerned. The result shows that in the Na2CO3 stress range of 0~0.4%, along with the increase of its intensity under different Na2CO3 stress intensity, GST activity of the chloroplast of seedling leaves of P. tenuiflora is strengthened and GST activity is rapidly weakened with the increase of the intensity of Na2CO3 stress more than 0.4%. The change of GST activity of the chloroplast along with the osmotic potential of culture solution and seedling leaves, relative electric conductance of the seedling leaves as well as the O2-.produce rate have the similar change tendency. There is significant nonlinear relationship among GST activity of chloroplast, osmotic potential of the seedling leaves and Na2CO3 concentration of culture solution, and among GST activity of chloroplast, O2-.produce rate and osmotic potential of seedling leaves, and among GST activity of chloroplast, osmotic potential of culture solution and that of seedling leaves, and among GST activity, the O2-.produce rate of chloroplast and relative electric conductance of the seedling leaves. These indicate that GST of chloroplast plays an important role in the process of seedlings of P. tenuiflora in resistance to the low intensity of Na2CO3 stress.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 343-344)

Pages:

712-720

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. G. Alscher. Biosynthesis and antioxidant function of glutathione in plants, Physiol. Plant, 1989, 77, p.457–464.

DOI: 10.1111/j.1399-3054.1989.tb05667.x

Google Scholar

[2] F. Droog., Plant Glutathione S-Transferases, a Tale of Theta and Tau. J, Plant Growth Regul, 1997, 16, p.95–107.

DOI: 10.1007/pl00006984

Google Scholar

[3] K. B. Mannervi, U. H. Danielson. Glutathione transferases: structure and catalytic, Crc. Crit. Rev. Biochem, 1998, 23, pp.283-337.

Google Scholar

[4] C. Pickett, B. Luayh. Glutathione S-transferases: gene structure, regulation and biological function. Anna. Rev. Biochem, 1989, 58, pp.743-764.

DOI: 10.1146/annurev.bi.58.070189.003523

Google Scholar

[5] R. C. Farey, A. R. Sundquist. Biologically important thiol-disulfide reactions and the role of cysteine in proteins: an evolution-ary perspective. Adv. Enzymol. Relat. Aread. Mol. Biol. 1991, 64, pp.1-53.

Google Scholar

[6] F. N. J. Droog, P. J. J. Hooykaas, B. J. VanderZaal. 2, 4-Dichlorophen-oxyacetic acid and realated chlorinated compounds inhibit two auxin-regulated type-III tabacco glutathione S-trandferases. Plant Physical, 1995, 107, pp.1139-1146.

DOI: 10.1104/pp.107.4.1139

Google Scholar

[7] A. Fluryt, K. D. Damd. 2, 4-D-inducibleS-transferase from soybean (Glycinemax), Purification, Characteristion and Induction. Planta. 1995, 94, pp.312-318.

Google Scholar

[8] J.X. Li, G. R. Sun, X. F. Yan. Study of Physiological Ecology of Plant in Saline Grassland on Songnen Plain. Northeast Forestry University Press, Harbin, 1996, pp.23-55.

Google Scholar

[9] X.F. Yan, G.R. Sun. Study of Physiological Ecology of Puccinellia tenuiflora, Science Press, Beijing, 2000, pp.81-85.

Google Scholar

[10] G. R. Sun, X. F. Yan, W. Xiao. Effect of sodium carbonate domestication progressively on alkaline resistance of seedlings of Puccinellia tenuiflora. J. Wuhan Bot. Res, 1996, 14 (1), pp.67-40.

Google Scholar

[11] G. R. Sun, X. F. Yan, J. Li. Effects of the growth of cultivated Puccinellia tenuiflora on physical characteristics of alkali soil. Acta Agrestia Sin, 2002, 10, pp.118-123.

Google Scholar

[12] G. R. Sun, X. F. Yan, J. Li. Effects of the growth of cultivated Puccinellia tenuiflora on chemical characteristics of alkali soil. Acta Agrestia Sin, 2002, 10, pp.179-184.

Google Scholar

[13] X. F. Yan, G. R. Sun, J. L. Li, J. X. Li. Diurnal changes of photosynthesis and transpiration of manually planting Puccinellia tenuiflora. Bull. Bot. Res. 1995, 15, pp.252-255.

Google Scholar

[14] X. F. Yan, G. R. Sun, W. Xiao. The relationship between diurnal changes of photosynthesis and transpiration of Puccinellia tenuiflora and the climate factors. Bull. Bot. Res. 1996, 16, pp.477-484.

Google Scholar

[15] X. F. Yan, G. R. Sun, W. Xiao. Seasonal changes of photosynthetic and transpiration characters of Puccinellia tenuiflora. Bull. Bot. Res. 1996, 16, pp.340-345.

Google Scholar

[16] X. F. Yan, G. R. Sun, W. Xiao. The relationships between seasonal changes of photosynthesis and transpiration of Puccinellia tenuiflora and the climate factors. Bull. Bot. Res. 1997, 17, pp.325-331.

Google Scholar

[17] X. F. Yan, G. R. Sun, W. Xiao. A comparatives study on photosynthetic abilities of Puccinellia tenuiflora of different grown years. Acta Phytoecolog ica Sin, 1998, 22, pp.231-236.

Google Scholar

[18] X. F. Yan, G. R. Sun, J. Li, W. Xiao. Changes of several osmotica in Puccinellia tenuiflora seedling under alkali salt stress, Bull. Bot. Res. 1999, 19, pp.347-355.

Google Scholar

[19] G. R. Sun, X. F. Yan. Effect of salt stress on photosynthetic characters of seedlings of Puccinellia tenuiflora. Bull. Bot. Res. 1996, 16, pp.346-350.

Google Scholar

[20] G. R. Sun, X. F. Yan, W. Xiao. Preliminary study on physiological mechanism of saline-Alkali tolerance of Puccinellia tenuiflora. J. Wuhan Bot. Res. 1997, 15 (2), pp.162-166.

Google Scholar

[21] G. R. Sun, Y. Guan, X. F. Yan. Effect of sodium carbonate stress on amino acid contents of Puccinellia tenuiflora seedlings. Bull. Bot. Res. 2000, 20 (1), pp.69-72.

Google Scholar

[22] G. R. Sun, Y. Guan, X. F. Yan. Effect of Na2CO3 Stress on Defensive Enzyme System of Puccinellia tenuiflora Seedlings. Acta Agrestia Sin. 2001, 9 (1), pp.34-38.

Google Scholar

[23] X. X. Wu, H. M. Gao, B. Zhang, P. Xu, Y. Zhang, G. R. Sun. Relationship of defensive enzymes and active oxygen of Puccinellia tenuiflora seedlings under Na2CO3 weak stress. Acta prataculturae Sin. 2004, 13(6), pp.87-91.

Google Scholar

[24] G. R. Sun, Y. Z. Peng, H. B. Shao, L. Y. Chu, H. Y. Min, W. Z. Cao, C. X. Wei. Do Puccinelia tenuiflora have the ability of salt exudation? Colloids and Surfaces B: Biointerfaces. 2005, 46(4), pp.197-203.

DOI: 10.1016/j.colsurfb.2005.11.003

Google Scholar

[25] Y. X. Wang, G. R. Sun, J. B. Wang, W. Z. Cao, J. S. Liang, Z. Z. Yu, Z. H. Lu. Relationships among MDA content, plasma membrane permeability and the chlorophyll fluorescence parameters of Puccinellia tenuiflora seedlings under NaCl stress. Acta Ecol. Sin. 2006, 26(1), pp.122-129.

Google Scholar

[26] J. B. Wang, G. R. Sun, G. Chen, W. Z. Cao, J. S. Liang, Z. Z. Yu, Z. H. Lu. The relationship between light energy utilization and dissipation of PSII of Puccinellia tenuiflora seedlings and osmotic potential of culture solution under Na2CO3 stress. Acta Ecol. Sin. 2006, 26(1), pp.115-121.

Google Scholar

[27] M. L. Dionisio-Sese, T. Satoshi. Antioxidant response of rice seedlings to salinity stress. Plant Sci. 1998, 135, pp.1-9.

DOI: 10.1016/s0168-9452(98)00025-9

Google Scholar

[28] R. K. Sairam, G. C. Srivastava, Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci. 2002, 162, pp.897-904.

DOI: 10.1016/s0168-9452(02)00037-7

Google Scholar

[29] M.M. Bradford. A rapid and sensitive method for the quantition of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 1976, 72 (1-2), pp.248-254.

DOI: 10.1016/0003-2697(76)90527-3

Google Scholar

[30] D. G. Davis, H. R. Swanson. Activity of stress-related enzymes in the perennial weed leafy spurge (Euphorbia esula L. ). Environ. Exp. Bot. 2001, 46, pp.95-108.

DOI: 10.1016/s0098-8472(01)00081-8

Google Scholar

[31] A. G. Wang, G. H. Luo. Quantitative relation between the reaction of hydroxylamine and superoxide amion radicals in plants. Plant physiol. Communication. 1990, 26(6), pp.55-57.

Google Scholar

[32] I. Apostel, P. F. Heinstein, P. S. Low. Rapid stimulation of an oxidative burst during elicitation of cultured plant cells. Plant Physiol. 1989, 90, pp.109-116.

DOI: 10.1104/pp.90.1.109

Google Scholar

[33] N. Doke, Y. Ohashi. Involvement of an O2-. generating system in the induction of necrotic lesions on tobacco leaves infected with tobacco mosaic virus. Physiol. Mol. Plant Pathol. 1988, 32, pp.163-175.

DOI: 10.1016/s0885-5765(88)80013-4

Google Scholar

[34] L. Legendre, S. Rueter, P.F. Heinstein, P.S. Low. Characterization of the oligogalacturonide-induced oxidative burst in cultured soybean (Glycine max) cells. Plant Physiol. 1993, 102, pp.233-240.

DOI: 10.1104/pp.102.1.233

Google Scholar

[35] M. C. Mehdy. Active oxygen species in plant defense against pathogens. Plant Physiol. 1994, 105, pp.467-472.

DOI: 10.1104/pp.105.2.467

Google Scholar

[36] D. Bartling, R. Radzio, U. Steiner, E.W. Weiler. Glutathione S-transferase with glutathione-peroxidase activity from Arabidopsis thaliana. Eur. J. Biochem. 1993, 216, pp.579-586.

DOI: 10.1111/j.1432-1033.1993.tb18177.x

Google Scholar

[37] K. M. Chen, H. J. Gong, S. M. Wang. Glutathione metabolism and environmental stresses in plants. Acta Bot. Boreal. –Occident. Sin. 2004, 24(6), pp.1119-1130.

Google Scholar