Effect and Toxic Mechanism of Nanoparticles to Algae

Article Preview

Abstract:

With the rapid development and versatile applications of nanotechnology, a large quantity of nanoparticles (NPs) has been released into the environment. It has been one of the most popular studies that concerning about the toxic effect of NPs on the organism of the total environment. This paper reviews the new results that reflect the impact of NPs on the algae. It also concludes the new researches from the fate and behaviors of the NPs, the ecotoxicology to the algae and the possible mechanism. Finally, there is an expectation concerning the study of toxicity of NPs to the algae, and propose what should investigate in future.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 343-344)

Pages:

81-84

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Nel A., Xia T., Mädler L., Li N., 2006. Toxic potential of materials at the nanolevel. Science 311, 622–627.

DOI: 10.1126/science.1114397

Google Scholar

[2] Zhang WX , 2003, Nanoscale iron particles for environmental remediation: An overview. J Nanopart Res 5: 323–332.

Google Scholar

[3] Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdorster G, Philbert MA, Ryan J, Seaton A, Stone V, Tinkle SS, Tran L, Walker NJ, Warheit DB , 2006, Safe handling of nanotechnology. Nature 444: 267–269.

DOI: 10.1038/444267a

Google Scholar

[4] Kang Seoktae, Pinault Mathieu, Pfefferle Lisa D., and Elimelech Menachem, Single-Walled Carbon Nanotubes Exhibit Strong Antimicrobial Activity, Langmuir 2007, 23, 8670-8673.

DOI: 10.1021/la701067r

Google Scholar

[5] Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol. 2007; 41: 8484–8490.

DOI: 10.1021/es071445r

Google Scholar

[6] Lin D. and Xing B., Root Uptake and Phytotoxicity of ZnO Nanoparticles, Environ. Sci. Technol. 2008, 42, 5580–5585.

DOI: 10.1021/es800422x

Google Scholar

[7] Oberdöster, E., 2004. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ. Health Perspect. 112, 1058–1062.

DOI: 10.1289/ehp.7021

Google Scholar

[8] Adams, L.K., Lyon, D.Y., Alvarez, P.J.J., 2006. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res. 40, 3527–3532.

DOI: 10.1016/j.watres.2006.08.004

Google Scholar

[9] Slaveykova V. I., Startchev K., Effect of natural organic matter and green microalga on carboxyl-polyethylene glycol coated CdSe/ZnS quantum dots stability and transformations under freshwater conditions, Environ. Pollut. 157, 2009, 3445–3450.

DOI: 10.1016/j.envpol.2009.06.017

Google Scholar

[10] Aruoja V., Dubourguier Henri-Charles, Kasemets K., Kahru A., Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata, Science of the Total Environment 407, 2009, 1461–1468.

DOI: 10.1016/j.scitotenv.2008.10.053

Google Scholar

[11] Van Hoecke K, Quik JT, Mankiewicz-Boczek J, De Schamphelaere KA, Elsaesser A, Van der Meeren P, Barnes C, McKerr G, Howard CV, Van de Meent D, Rydzyński K, Dawson KA, Salvati A, Lesniak A, Lynch I, Silversmit G, De Samber B, Vincze L, Janssen CR, Fate and Effects of CeO2 Nanoparticles in Aquatic Ecotoxicity Tests, Environ. Sci. Technol. 2009, 43, 4537–4546.

DOI: 10.1021/es9002444

Google Scholar

[12] Navarro E., Piccapietra F., Wagner B., Marconi F., Kaegi R., Odzak N., Sigg L., Behra R., Toxicity of Silver Nanoparticles to Chlamydomonas reinhardtii, Environ. Sci. Technol. 2008, 42, 8959–8964.

DOI: 10.1021/es801785m

Google Scholar

[13] Miao Ai-Jun, Schwehr Kathy A., Xu Chen, Zhang Sai-Jin, Luo Zhiping, Quigg Antonietta, Santschi Peter H., The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances, Environ. Pollut. 157, 2009, 3034–3041.

DOI: 10.1016/j.envpol.2009.05.047

Google Scholar

[14] Hund-Rinke K. and Simon M., Ecotoxic Effect of Photocatalytic Active Nanoparticles (TiO2) on Algae and Daphnids, Environ Sci. Pollut Res 2006, 13, 225-232.

DOI: 10.1065/espr2006.06.311

Google Scholar

[15] Wang J., Zhang X., Chen Y., Sommerfeld M., Hu Q., Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii, Chemosphere 2008, 73, 1121–1128.

DOI: 10.1016/j.chemosphere.2008.07.040

Google Scholar

[16] Sato T., Taya M., 2006, Enhancement of phage inactivation using photocatalytic titanium dioxide particles with different crystalline structures. Biochemical Engineering Journal 28 (3), 303–308.

DOI: 10.1016/j.bej.2006.01.004

Google Scholar

[17] Saison C., Perreault F., Daigle J. -C., Fortin C., Claverie J., Morin M., Popovic R., Effect of core-shell copper oxide nanoparticles on cell culture morphology and photosynthesis (Photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii, Aquat. Toxicol. 2010, 96, 109–114.

DOI: 10.1016/j.aquatox.2009.10.002

Google Scholar

[18] Lin S., Bhattacharya P., Rajapakse N. C., Brune D. E., and Ke P. C., Effects of Quantum Dots Adsorption on Algal Photosynthesis, J. Phys. Chem. C, 2009, 113, 10962–10966.

DOI: 10.1021/jp904343s

Google Scholar

[19] Kuwabara JS, Davis JA, Chang CCY, Algal growth response to particle-bound orthophosphate and zinc, Limnol Oceanogr 1986, 31, 503–511.

DOI: 10.4319/lo.1986.31.3.0503

Google Scholar