Role of Ethylene in the Biosynthesis of Fatty Acid-Derived Volatiles in Tomato Fruits

Article Preview

Abstract:

Regulation of ethylene biosynthesis or action has an important effect on volatiles production in tomato (Lycopersicon esculentum) fruits. To understand the role of ethylene in the biosynthesis of fatty acid-derived aroma volatiles in tomato, we used Lichun tomato from a transgenic line with strictly suppression of ethylene biosynthesis (antisense LeACS2 tomato) and its wild type background line. This study was focused on the levels of the precursor substrates, activities and transcriptional levels of aroma volatile-related enzymes, including lipoxygenase (LOX), hydroperoxide lyase (HPL) and alcohol dehydrogenase (ADH). We also investigated the different abilities of converting the precursor substrates to aroma volatiles in ethylene suppressed transgenic and wild-type (WT) tomato fruits. Our results showed that the contents of endogenous linoleic and linolenic acid in tomato fruits were ethylene depended. Suppression of ethylene biosynthesis increased the content of endogenous linolenic acid in Lichun tomato fruit and then declined the ratio of linoleic /linolenic acid. Exogenous ethylene changed the value of linoleic acid /linolenic acid in antisense LeACS2 (ACS) tomato fruit to the similar level of WT. During the ripening of wild type Lichun tomato fruit, LOX activity was ethylene and development dependent. Suppression of ethylene biosynthesis did not inhibit the transcriptional expression of LoxC gene. And the HPL and ADH activities were partial ethylene-dependent during the ripening of wild type Lichun tomato fruit. Moreover, suppression of ethylene biosynthesis also affected the bioconversion of unsaturated-fatty acid precursors to C6 aldehydes and C6 alcohols. All these results indicated that ethylene had complicated effects on the biosynthesis of fatty acid-derived armoa volatiles by affecting the precursor’s content, enzyme activities, enzyme expression and the substrate utilization.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 343-344)

Pages:

937-950

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. E. Gray, S. Picton, J. J. Giovannoni, D. Grierson, The use of transgenic and naturally-occurring mutants to understand and manipulate tomato fruit ripening, Plant, Cell & Environment, Vol 17, May 1994, p.557.

DOI: 10.1111/j.1365-3040.1994.tb00149.x

Google Scholar

[2] R. L. Shewfelt, S. E. Prussia, A. V. A Resurrection, W. C. Hurst, D. T. Campbell, Quality changes of vineripened tomatoes within the postharvest handling system, Journal of Food Science, Vol 52, May 1987, p.661.

DOI: 10.1111/j.1365-2621.1987.tb06697.x

Google Scholar

[3] R G. Buttery, L. C. Ling, Enzymatic production of volatiles in tomatoes, flavor precursors,. Schreier, P., Winterhalter, P. Eds.; Wheaton: Allured Pub, (1993).

Google Scholar

[4] H. L. Zhu, B. Z. Zhu, D. Q. Fu, Y. H. Xie, Y. L. Hao, Y. B. Luo, Role of ethylene in the biosynthetic pathways of aroma volatiles in ripening fruit, Russian Journal of Plant Physiology, Vol 52, No 5 2005, pp.691-695.

DOI: 10.1007/s11183-005-0103-9

Google Scholar

[5] K. B. Ishida, E. A. Baldwin, R. G. Buttery, S. H. Chui, L. C. Ling, Flavor volatiles, sugars and color development in ripening in vitro-cultured tomato fruit and calyx, Physiologia Plantarum, Vol 89, December 1993, p.861.

DOI: 10.1034/j.1399-3054.1993.890426.x

Google Scholar

[6] K. Matsui, A. Kurishita, A. Hisamitsu, T. Kajiwara, A lipidhydrolysing activity involved in hexenal formation, Biochem Soc Trans, Vol 28, December 2000 , pp.857-60.

DOI: 10.1042/bst0280857

Google Scholar

[7] B. A. Vick, Oxygenated fatty acids of the lipoxygenase pathway. In lipid metabolism in plants, Moore, T. S. J. Ed.; CRC: Boca Raton, FL. 1993, pp.167-191.

DOI: 10.1201/9781351074070-6

Google Scholar

[8] A. Griffiths, C. Barry, A. G. Alpuche-Solis, D. Grierson, Ethylene and developmental signals regulate expression of lipoxygenase genes during tomato fruit ripening, J. Exp. Bot, Vol 50, February 1999, pp.793-798, doi: 10. 1093/jxb/50. 335. 793.

DOI: 10.1093/jxb/50.335.793

Google Scholar

[9] M. A. Noordermeer, G. A. Veldink, J. F. Vliegenthart, Fatty acid hydroperoxide lyase: a plant cytochrome P450 enzyme involved in wound healing and pest resistance, ChemBioChem, Vol 2, August 2001, p.494.

DOI: 10.1002/1439-7633(20010803)2:7/8<494::aid-cbic494>3.0.co;2-1

Google Scholar

[10] T. J. Longhurst, H. F. Tung, C. J. Brady, Developmental regulation of the expression of alcohol dehydrogenase in ripening tomato fruits, Journal of Food Biochemistry, Vol 14, December 1990, p.421–433, DOI: 10. 1111/j. 1745-4514. 1990. tb00804. x.

DOI: 10.1111/j.1745-4514.1990.tb00804.x

Google Scholar

[11] A. Hatanaka, T. Kajiwara, J. Sekiya, Biosynthetic pathway for C6-aldehydes formation from linolenic acid in green leaves, Chemistry and Physics of Lipids, Vol 44, September 1987, pp.341-361, doi: 10. 1016/0009-3084(87)90057-0.

DOI: 10.1016/0009-3084(87)90057-0

Google Scholar

[12] M. T. Morales, R. Aparicio, J. J. Calvente, Influence of olive ripeness on the concentration of green aroma compounds in virgin olive oil, Flavour and Fragrance Journal, Vol 11, May 1996, p.171.

DOI: 10.1002/(sici)1099-1026(199605)11:3<171::aid-ffj563>3.0.co;2-2

Google Scholar

[13] A. Hatanaka, The biogeneration of green odour by green leaves, Phytochemistry, Vol 34, November 1993, pp.1201-1218, doi: 10. 1016/0031-9422(91)80003-J.

DOI: 10.1016/0031-9422(91)80003-j

Google Scholar

[14] A. B. Bleecker, G. E. Schaller, The mechanism of ethylene perception, Plant Physiol, Vol 111, July 1996, p.653–660.

DOI: 10.1104/pp.111.3.653

Google Scholar

[15] A. J. Hamilton, G. W. Lycett, D. Grierson, Antisense gene that inhibits synthesis of the hormone ethylene in the transgenic plant, Nature, Vol 246, July 1990, pp.284-287, doi: 10. 1038/346284a0.

DOI: 10.1038/346284a0

Google Scholar

[16] J. Deikman, Molecular mechanisms of ethylene regulation of gene transcription, Physiologia Plantarum, Vol 100, July 1997, p.561–566, DOI: 10. 1111/j. 1399-3054. 1997. tb03061. x.

DOI: 10.1034/j.1399-3054.1997.1000318.x

Google Scholar

[17] J. Giovannoni, Molecular biology of fruit maturation and ripening, Annu. Rev. Plant Physiol. Plant Mol. Biol, Vol 52, 2001, pp.725-749, DOI: 10. 1146/annurev. arplant. 52. 1. 725.

DOI: 10.1146/annurev.arplant.52.1.725

Google Scholar

[18] P. W. Oeller, L. Min-Wong, L. P. Taylor, D. A. Pike, A. Theologis, Reversible inhibition of tomato fruit senescence by antisense RNA, Science, Vol. 254, October 1991, pp.437-439, DOI: 10. 1126/science. 1925603.

DOI: 10.1126/science.1925603

Google Scholar

[19] Y. B. Luo, J. P. Sheng, L. Shen, Control of tomato ethylene biosynthesis by the use of antisense ACCase gene, J. Agric. Biotech, Vol 3, April 1995, pp.38-44, DOI:cnki: ISSN: 10061304. 0.

Google Scholar

[20] E. Yimaz, J. W. Scott, R. Shewfelt, Effect of harvesting maturity and off-plant ripening on the activities of lipoxygenase, hydroperoxide lyase, and alcohol dehydrogenase enzymes in fresh tomato, J. Food Biochem, Vol 26, November 2002, p.443.

DOI: 10.1111/j.1745-4514.2002.tb00765.x

Google Scholar

[21] K. S. Chen, F. Li, S. L. Zhang, S. R. Gavin, Role of Abscisic Acid and Indole-3-acetic Acid in Kiwifruit Ripening, Acta Horticulturae Sinica, Vol 26, 1999, pp.81-86.

Google Scholar

[22] B. A. Vick, A spectrophotometric assay for hydroperoxide lyase,. Lipids, Vol 26, 1991, pp.315-320, DOI: 10. 1007/BF02537143.

DOI: 10.1007/bf02537143

Google Scholar

[23] C. J. Brady, T. J. Longhurst, H. F. Tung, Developmental regulation of the expression of alcohol dehydrogenase in ripening tomato fruits, J. Food Biochem, Vol 14, December 1990, p.421–433, DOI: 10. 1111/j. 1745-4514. 1990. tb00804. x.

DOI: 10.1111/j.1745-4514.1990.tb00804.x

Google Scholar

[24] T. W. Gregory, G. R. Margaret, G. S. Jone, A procedure for the small-scale isolation of plant suitable for RNA blot analysis, Anal. Biochem, Vol 172, July 1988, pp.279-283, DOI: 10. 1016/0003-2697(88)90443-5.

DOI: 10.1016/0003-2697(88)90443-5

Google Scholar

[25] Y. Liu, M. Schiff, S. P. Dinesh-Kumar, Virus-induced gene silencing in tomato, Plant J, Vol 31, September 2002, p.777–786, DOI: 10. 1046/j. 1365-313X. 2002. 01394. x.

DOI: 10.1046/j.1365-313x.2002.01394.x

Google Scholar

[26] C. John, M. Riley, J. E. Thompson, Ripening-induced acceleration of volatile aldehyde generation following tissue disruption in tomato fruit, Physiol. Plantarum, Vol 104, December 1998, p.571–576, DOI: 10. 1034/j. 1399-3054. 1998. 1040408. x.

DOI: 10.1034/j.1399-3054.1998.1040408.x

Google Scholar

[27] F. Flores, F. E. Yahyaoui, G. Billerbeck, F. Romojaro, A. Letche, M. Bouzayen, J. C. Pech, C. Ambid, Role of ethylene in the biosynthetic pathway of aliphatic ester aroma volatiles in Charentais Cantaloupe melons,. J. Exp. Bot, Vol 53, September 2001, pp.201-206.

DOI: 10.1093/jexbot/53.367.201

Google Scholar

[28] H. Y. Gao, H. L. Zhu, Y. Shao, A. J. Chen, C. W. Lu, Y. B. Luo, B. Z. Zhu, Lycopene accumulation affects the biosynthesis of some carotenoid-related volatiles independent of ethylene in tomato, J Integr Plant Biol, Vol 50, August 2008, p.991.

DOI: 10.1111/j.1744-7909.2008.00685.x

Google Scholar

[29] A. D. Bauchot, D. S. Mottram, A. T. Dodson, P. John, Effect of aminocyclopropane-1-carboxylic acid oxidase antisense gene on the formation of volatile esters in Cantaloupe Charentais melon, J. Agric. Food Chem, Vol 46, September 1998, p.4787.

DOI: 10.1021/jf980692z

Google Scholar

[30] R. Ayub, M. Guis, M. Benamor, Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits, Nat. Biotechnol, Vol 14, April 1994, pp.862-866, DOI: 10. 1038/nbt0796-862.

DOI: 10.1038/nbt0796-862

Google Scholar

[31] C. L. Wang, C. K. Chin, C. T. Ho, C. F. Hwang, J. J. Polashock, C. E. Martin, Changes of fatty acids and fatty acid derived flavor compounds by expressing the yeast 9-desaturase gene in tomato, J. Agric. Food Chem, Vol 44, Octorber 1996, pp.3399-3402.

DOI: 10.1021/jf960174t

Google Scholar

[32] G. D. Bruno, A. M. Dandekar, A. A. Kader, Impact of suppression of ethylene action or biosynthesis on flavor metabolism in apple fruits, J. Agric. Food Chem, Vol 52, August 2004, pp.5694-5701, DOI: 10. 1021/jf049504x.

DOI: 10.1021/jf049504x

Google Scholar

[33] J. Song, F. Bangerth, Fatty acids as precursors for aroma volatile biosynthesis in pre-climacteric and climacteric apple fruit, Postharv. Biol. Technol, Vol 30, November 2003, pp.113-121, DOI: 10. 1016/S0925-5214(03)00098-X.

DOI: 10.1016/s0925-5214(03)00098-x

Google Scholar

[34] D. F. Meigh, A. C. Hulme, Fatty acid metabolism in the apple fruit during the respiration climacteric, Phytochemistry, Vol 4, March 1965, pp.863-871, DOI: 10. 1016/S0031-9422(00)86264-0.

DOI: 10.1016/s0031-9422(00)86264-0

Google Scholar

[35] A. Brackmann, J. Streif, F. Bangerth, Relationship between a reduced aroma production and lipid metabolism of apples after long-term controlled atmosphere storage, J. Am. Soc. Hortic. Sci, Vol 118, March 1993, pp.243-247.

DOI: 10.21273/jashs.118.2.243

Google Scholar

[36] A. A. Saquet, J. Streif, F. Bangerth, Impaired aroma production of CA-stored "Jonagold" apples as affected by adenine and pyridine nucletotide levels and fatty acid concentrations, J. Hortic. Sci. Biotechnol,. Vol 78, 2003, pp.695-705.

DOI: 10.1080/14620316.2003.11511686

Google Scholar

[37] H. Y. Gao, B. Z. Zhu, H. L. Zhu, Y. L. Zhang, Y. H. Xie, Y. C. Li, Y. B. Luo, Effect of Suppression of Ethylene Biosynthesis on Flavor Products in Tomato Fruits, Russ. J. Plant Physiol, Vol 54, 2007, pp.80-88, DOI: 10. 1134/S1021443707010128.

DOI: 10.1134/s1021443707010128

Google Scholar

[38] D. A. Gray, S. Prestage, S. T. Robert, A. J. Taylor, Fresh tomato specific fluctuations in the composition of lipoxygenase-generated C6 aldehydes, Food Chemistry, Vol 64, February 1999, pp.149-153, DOI: 10. 1016/S0308-8146(98)00163-0.

DOI: 10.1016/s0308-8146(98)00163-0

Google Scholar

[39] B.J. Ferrie, N. Beaudoin, W. Burkhart, C. G. Bowsher, S. J. Rothstein, The cloning of two tomato lipoxygenase genes and their differential expression during fruit ripening, Plant Physiol, Vol 106, September 1994, pp.109-118.

DOI: 10.1104/pp.106.1.109

Google Scholar

[40] T. Heitz, D. R. Bergey, C. A. Ryan, A Gene Encoding a chloroplast-targeted lipoxygenase in tomato leaves is transiently induced by wounding, systemin, and methyl jasmonate, Plant Physiol, Vol 114, July 1997, pp.1085-1093.

DOI: 10.1104/pp.114.3.1085

Google Scholar

[41] A. Theologis, One rotten apple spoils the whole bushel: the role of ethylene in fruit ripening, Cell, Vol 70, July 1992, p.181–184.

DOI: 10.1016/0092-8674(92)90093-r

Google Scholar

[42] J. J. Salas, C. Sánchez, D. L. García-González, R. Aparicio, Impact of the suppression of lipoxygenase and hydroperoxide lyase on the quality of the green odor in green leaves, J. Agric. Food Chem, Vol 53, February 2005, pp.1648-1655.

DOI: 10.1021/jf040331l

Google Scholar

[43] H. Fukushige, D.F. Hildebrand, Watermelon hydroperoxide lyase greatly increases C6 aldehyde formation in transgenic leaves, J. Food Agric. Chem, Vol 53, February 2005, pp.2046-2051, DOI: 10. 1021/jf048391e.

DOI: 10.1021/jf048391e

Google Scholar

[44] J. C. M. Riley, C. Willemot, J. E. Thompson, Lipoxygenase and hydroperoxide lyase activities in ripening tomato fruit, Postharv. Biol. Technol, Vol 7, January 1996, pp.97-107, DOI: 10. 1016/0925-5214(95)00032-1.

DOI: 10.1016/0925-5214(95)00032-1

Google Scholar

[45] S. D. Tanksley, Linkage, chromosomal association and expression of Adh-12 and Pgm-2 in tomato, Biochem. Genetics, Vol 17, 1979, pp.1159-1167.

DOI: 10.1007/bf00504353

Google Scholar

[46] A.R.S. Chen, T. Chase, Alcohol-dehydrogenase-2 and pyruvate decarboxylase induction in ripening and hypoxic tomato fruit, Plant Physiol. Biochem., Vol 31, 1993, pp.875-885.

Google Scholar

[47] J. Speirs, E. Lee, K. Holt, K. Yong-Duk, N. Steele, B. Loveys, W. Schuch, Genetic manipulation of alcohol dehydrogenase levels in ripening tomato fruit affects the balance of some flavor aldehydes and alcohols, Plant Physiol, Vol 117, July 1998, pp.1047-1058.

DOI: 10.1104/pp.117.3.1047

Google Scholar

[48] J. Speirs, R. Corel, P. Cain, Relationship between ADH activity, ripeness and softness in six tomato cultivars, Sci. Hortic, Vol 93, March 2002, pp.137-142, DOI: 10. 1016/S0304-4238(01)00316-8.

DOI: 10.1016/s0304-4238(01)00316-8

Google Scholar

[49] S. Prestage, R. S. T. Linforth, A. J. Taylor, E Lee, J. Speirs, W. Schuch, Volatile production in tomato fruit with modified alcohol dehydrogenase activity, J. Sci. Food Agric, Vol 79, January 1999, pp.131-136, DOI: 10. 1002/(SICI)1097-0010.

DOI: 10.1002/(sici)1097-0010(199901)79:1<131::aid-jsfa196>3.0.co;2-z

Google Scholar

[50] G. D. Bruno, A. M. Dandekar, A. A. Kader, Relationship of ethylene biosynthesis to volatile production, related enzymes, and precursor availability in apple peel and flesh tissues, J. Agric. Food Chem, Vol 53, March 2005, pp.3133-3141.

DOI: 10.1021/jf047892x

Google Scholar