Morphogenesis-Associated/Dissociated Production of Epothilone in Wild Sorangium Cellulosum Strains

Article Preview

Abstract:

To investigate the characters of Sorangium strains and the approaches for improving the production of epothilone, correlation of epothilone production and morphogenesis was studied in strains So0157-2, So0007-3 and So0003-3. On lean medium, So0157-2 could produce epothilones in a wide pH range (5.0-12.0), but formed fruiting bodies at high pH values (9.0-14.0). Formation of fruiting body did not affect the yield of epothilones in So0157-2. In So0007-3 and So0003-3, producing of epothilone was strongly coupled with the process of morphogenesis. It suggests that reduction of the association between morphogenesis and epothilone producing would prominently improve the epothilone production.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 343-344)

Pages:

951-957

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Dworkin. Recent advances in the social and developmental biology of the myxobacteria., Microbiol. Rev. 60: 70-102, (1996).

DOI: 10.1128/mr.60.1.70-102.1996

Google Scholar

[2] K. Gerth, S. Pradella, O. Perlova, S. Beyer and R. Müller. Myxobacteria: proficient producers of novel natural products with various biological activities-past and future biotechnological aspects with the focus on the genus Sorangium., J. Biotechnol. 106: 233-253, (2003).

DOI: 10.1016/j.jbiotec.2003.07.015

Google Scholar

[3] K. Gerth, N. Bedorf, G. Höfle, H. Irschik, and H. Reichenbach. Epothilons A and B-Antifungal and cytotoxic compounds from Sorangium cellulosum (Myxobacteria) -production, physico-chemical and biological properties., J. Antibiot. 49: 560-564, (1996).

DOI: 10.7164/antibiotics.49.560

Google Scholar

[4] D.M. Bollag, P.A. Mcqueney, J. Zhu, O. Hensens, L. Koupal, J. Liesch, M. Goetz, E. Lazarides, and D.M. Woods. Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action., Cancer Res. 55: 2325-2333, (1995).

Google Scholar

[5] R.J. Kowalski, P. Giannakakou, and E. Hamel. Activities of the microtubule-stabilizing agents epothilones A and B with purified tubulin and in cells resistant to paclitaxel (Taxol®)., J. Biol. Chem. 272: 2534-2541, (1997).

DOI: 10.1074/jbc.272.4.2534

Google Scholar

[6] B. Julien and S. Shah. Heterogonous expression of epothilone biosynthetic genes in Myxococcus xanthus., Antimicrob. Agents Chemother. 46: 2772-2778, (2002).

DOI: 10.1128/aac.46.9.2772-2778.2002

Google Scholar

[7] H. Reichenbach, and M. Dworkin. The Myxobacterial., In: Balous A, Trüper HG, Dworkin M, Harder W, and Schleifer KH (eds) The prokaryotes, 2nd. Springer Verlag, New York, pp.3416-3487, (1992).

DOI: 10.1007/978-1-4757-2191-1_26

Google Scholar

[8] H. Dong, Y.Z. Li, and W. Hu. Analysis of purified tubulin in high concentration of glutamate for application in high throughput screening for microtubule-stabilizing agents., Assay Drug. Dev. Technol. 2: 621-628, (2004).

DOI: 10.1089/adt.2004.2.621

Google Scholar

[9] W. Hu, H. Dong, Y.Z. Li, X.T. Hu, G.J. Han and Y.B. Qu. A high-throughput model for screening anti-tumor agents capable of promoting polymerization of tubulin in vitro. " Acta. Pharmacol. Sin. 25: 775-782, (2004).

Google Scholar

[10] Z.C. Yan, B. Wang, Y.Z. Li, X. Gong, H.Q. Zhang and P.J. Gao. Morphologies and phylogenetic classification of cellulolytic myxobacteria., Syst. Appl. Microbiol. 26: 104-108, (2003).

DOI: 10.1078/072320203322337380

Google Scholar

[11] W. Dawid, Biology and global distribution of myxobacteria in soils., FEMS Microbiol. Rev. 24: 403-427, (2000).

DOI: 10.1111/j.1574-6976.2000.tb00548.x

Google Scholar

[12] Y.Z. Li, J. Li, L. Zhou, Y. Zhang, W. Hu and Q. Chen. Isolation and identification of myxobacterial sources in China., Acta. Microbiol. Sin. (in Chinese) 40: 652-656, (2000).

Google Scholar