Toxicological Mechanisms of Carbon-Based Nanomaterials

Article Preview

Abstract:

Abstact:With the development of materials science and combination with medicine, more and more nano-materials are used in clinical medicine.There are much advantage in nano-material .The reason that the nano-materials are utilized widely is its quantum effect and huge superficalarea.But with further research ,more and more disadvantages are found. Many research on the environmental and human health risks of engineered nano-materials focus on their acute toxicity. However,the long-term chronic effects of nanomaterials on living systems is neglected.The potential of nanomaterials to promote the formation of reactive oxygen species is one of the primary reason in their genotoxic. DNA would be damaged by the reactive oxygen species. If the DNA cannot be renew ,it could lead to gene mutation , canceration. This review focuses on the impact of carbon-based nano-materials on DNA .

You might also be interested in these eBooks

Info:

Periodical:

Pages:

12-17

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Nel A, Xia T, Madler L, Li N (2006) Science 311: 622–627.

Google Scholar

[2] Deposition model[ M ] & International Commission on Radiological. Protection ICRP Publication 66: Human Respiratory Tract Model for Radiologica l Protection. Annals of the ICRP Volume 24 ( 1-3) . E lsevier (1995).

DOI: 10.1093/annhyg/38.inhaled_particles_vii.251

Google Scholar

[3] O berdorster G, F inkelstein JN, John ston C G elein R, Cox C, Baggs R, e t a l A cute pu l onary effects of ultrafine part icles imrats and m ice[ J] . R es R ep H eal th Eff Inst 2000 ( 96) : 5 - 74disc 75- 86.

Google Scholar

[4] Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Oxford University Press, New York.

Google Scholar

[5] Knaapen AM, Seiler F, Schilderman PAEL, Nehls P, Bruch J, Schins RPF, Borm PJA (1999) Free Radic Biol Med 27: 234–240.

DOI: 10.1016/s0891-5849(98)00285-8

Google Scholar

[6] Evans DE, Dizdaroglu M, Cooke MS (2004) Mutat Res 567: 1–61.

Google Scholar

[7] Karlsson HL, Cronholm P, Gustafsson J, Moller L (2008) ChemRes Toxicol 21: 1726–1732.

Google Scholar

[8] Mroz RM, Schins RPF, Li H, Jimenez LA, Drost EM, HolowniA, MacNee W, Donaldson K (2008) Eur Respir J 31: 241–251.

DOI: 10.1183/09031936.00006707

Google Scholar

[9] Mroz RM, Schins RPF, Li H, Drost EM, Macnee W, DonaldsonK (2007) J Physiol Pharmacol 58: 461–470.

Google Scholar

[10] Yang H, Liu C, Yang DF, Zhang HS, Xi ZG (2009) J Appl Toxicol 29: 69–78.

Google Scholar

[11] Zhong BZ, Whong WZ, Ong TM (1997) Mutat Res GenetToxicol Environ Mutagen 393: 181–187.

Google Scholar

[12] Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000)Environ Mol Mutagen 35: 206–221.

DOI: 10.1002/(sici)1098-2280(2000)35:3<206::aid-em8>3.0.co;2-j

Google Scholar

[13] Johansson C, Moller P, Forchhammer L, Loft S, Godschalk RWL, Langie SAS, Lumeij S, Jones GDD, Kwok RWL, AzquetaA, Phillips DH, Sozeri O, Routledge MN, Charlton AJ, Riso P, Porrini M, Allione A, Matullo G, Palus J, Stepnik M, CollinsAR, Moller L (2009).

DOI: 10.1093/mutage/gep055

Google Scholar

[14] Devanaboyina US, Gupta RC. Sensitive detection of 8-hydroxy-2'deoxyguanosine in DNA by 32p-postlabeling assay and the basal levels in rat tissues [j]. carcinogenesis, 1996, 17(5): 917-924.

DOI: 10.1093/carcin/17.5.917

Google Scholar

[15] Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Oxford University Press, New York.

Google Scholar

[16] Lam, C. W., James, J. T., McCluskey, R., and Hunter, R. L. (2004). Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol. Sci. 77, 126–134.

DOI: 10.1093/toxsci/kfg243

Google Scholar

[17] Ma-Hock, L., Treumann, S., Strauss, V., Brill, S., Luizi, F., Mertler, M., Wiench, K., Gamer, A., van Ravenzwaay, B., and Landsiedel, R. (2009).

DOI: 10.1093/toxsci/kfp146

Google Scholar

[18] Dockery, D., Pope, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., Ferris, G. G., and Speizer, F. E. (1993). An association between air pollution and mortality in six US cities. N. Engl. J. Med. 329, 1753–1759.

DOI: 10.1056/nejm199312093292401

Google Scholar

[19] Pacurari M, Yin XJ, Ding M, Leonard SS, Schwegler-Berry D, Ducatman BS, Chirila M, Endo M, Castranova V, Vallyathan V 2008) Nanotoxicology 2: 155–170.

DOI: 10.1080/17435390802318356

Google Scholar

[20] Yang K, Wan J, Zhang S, Zhang Y, Lee ST, Liu Z. In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano. 2011 Jan 25; 5(1): 516-22. Epub 2010 Dec 16.

DOI: 10.1021/nn1024303

Google Scholar