Applications of Quantum Dots in Cancer Research

Article Preview

Abstract:

Quantum dots(QDs) usually refers to nanocrystalline materials whose diameter is smaller than the exciton Bohr radius. These materials have quantum size effect,the most significant manifestation is their optical properties change with particle size.The unique optical properties make quantum dots to be Ideal markers for tumor cell tracking and targeting,such as mammary cancer, liver cancer, and melanoma.There are broad prospects in tapping the potential of this highly sensitive technology in serum and other body fluids, so as to increase the early diagnosis rate of tumors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-34

Citation:

Online since:

September 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Gao X, Cui Y, Levenson R M, et al. In vivo cancer targeting and imaging with semiconductor quantum dots [J]. Nat Biotechnol, 2004, 22 (8): 969-976.

DOI: 10.1038/nbt994

Google Scholar

[2] Gao X, Yang L, Petros J A, et al. In vivo molecular and cellular imaging with quantum dots [J]. Curr Opin Biotechnol, 2005, 16(1): 63-72.

Google Scholar

[3] Jaiswal J K, Mattoussi H, Mauro J M, et al. Longrterm multiple color imaging of live cells using quantum dot bioconjugates [J]. Nat Biotechnol, 2003, 21(1): 47-51.

DOI: 10.1038/nbt767

Google Scholar

[4] Dahan M, Levi S, Luccardini C, et al. Diffusion dynamics of glycine receptors revealed by singlerquantum dot tracking [J]. Science, 2003, 302 (17): 442-445.

DOI: 10.1126/science.1088525

Google Scholar

[5] Mattheakis L C, Dias J M, Choi Y J, et al. Optical coding of mammalian cells using semiconductor quantum dots [J]. Anal Biochem, 2004, 327 (2): 200-208.

DOI: 10.1016/j.ab.2004.01.031

Google Scholar

[6] Akerman M E, Chan W C, LaakkonenP, et al. Nanocrystal targeting in vivo [J]. Proc Natl Acad Sci USA, 2002, 99(20): 12617-12621.

DOI: 10.1073/pnas.152463399

Google Scholar

[7] Parak W J, Pellegrino T, Plank C. Labelling of cells with quantum dots[J]. Nanotechnology, 2005, 16(2): R9-R25.

DOI: 10.1088/0957-4484/16/2/r01

Google Scholar

[8] Goldman E R, Anderson G P, Tran PT, et al. Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays[J]. Anal Chem, 2002, 74 (4): 841 -847.

DOI: 10.1021/ac010662m

Google Scholar

[9] Jaiswal J K, Goldmen E R, MattoussiH, et al. Use of quantum dots for live cell imaging [J]. Nat Methods, 20041(1): 73-78.

Google Scholar

[10] Voura E B, Jaiswal J K, Mattoussi H, et al. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emissionrscanning microscopy [J]. Nat Med, 2004, 10(9): 993-998.

DOI: 10.1038/nm1096

Google Scholar

[11] Dubertret B, Skourides P, Norris D J, et al. In vivo imaging of quantum dots encapsulated in phospholipids micelles [J]. Science, 2002, 298 (29): 1759 - 1762.

DOI: 10.1126/science.1077194

Google Scholar

[12] Pinaud F, King D, Moore H P, et al. Bioactivation and cell targeting of semiconductor CdSe/ZnS nanocrystals with phytochelatinrrelated peptides [J]. J Am Chem Soc, 2004, 126(19): 6115-6123.

DOI: 10.1021/ja031691c

Google Scholar

[13] Ballou B, Lagerholm B C, Ernst L A, et al. Noninvasive imaging of quantum dots in mice [J]. Bioconjuate Chem, 2004, 15(1): 79-86.

DOI: 10.1021/bc034153y

Google Scholar

[14] Sukhanova A, Devy J, Venteo L, et al. Biocompatible fluorescent nanor crystels for immunolabeling of membrane proteins and cells [J]. Anal Biochem, 2004, 324(1): 60-67.

DOI: 10.1016/j.ab.2003.09.031

Google Scholar

[15] Stsiapura V, Sukhanova A, Artemyev M, et al. Functionalized nanocrystalr tagged fluorescent polymer beads: synthesis, physicochemical characterir zation, and immunolabeling application [J]. Anal Biochem, 2004, 334(2): 257-265.

DOI: 10.1016/j.ab.2004.07.006

Google Scholar

[16] Kim S, Lim Y T, Soltesz E G, et al. Nearrinfrared fluorescent type II quantum dots for sentinel lymph node mapping [J]. Nat Biotechnol, 2004, 22(1): 93-97.

DOI: 10.1038/nbt920

Google Scholar

[17] Lidke D S, Nagy P, Heintzmann R, et al. Quantum dot ligands provide new insights into erbB / HER receptor mediated signal transduction [J]. Nat Biotechnol, 2004, 22 (2): 198-203.

DOI: 10.1038/nbt929

Google Scholar

[18] Li Y, Tang Z Y, Ye S L, et al. Establishment of cell clones with different metastatic potential from the metastatic hepatocellular carcinoma cell line MHCC97 [J]. World J Gastroenterol, 2001, 7(5): 630-636.

DOI: 10.3748/wjg.v7.i5.630

Google Scholar

[19] Pellegrino T , et al. Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals[J]. Nano Lett. 2004. 4: 703-707.

DOI: 10.1021/nl035172j

Google Scholar

[20] Alivisatos P. The use of nanocryatals in biological detection[J]. NatBiotechnol, 2004, 22(1): 47-52.

Google Scholar

[21] Michalet X, Pinaud FF, Bentolila LA, et al. Quantum dots for live cells, in vivo imaging, and diagnostics[J]. Science, 2005, 307(5709): 538-544.

DOI: 10.1126/science.1104274

Google Scholar

[22] Tanke HJ, Dirks RW, Raap T. Fish and immunocytochemistry: Towards visualising single target molecules in living cells[J]. Curr Opin Biotechnol, 2005, 16(1): 49-54.

DOI: 10.1016/j.copbio.2004.12.001

Google Scholar

[23] Gao X, Yang L, Petros JA, et al. In vivo molecular and cellular imaging with quantum dots[J]. Curr Opin Biotechnol, 2005, 16(1): 63-72.

Google Scholar