[1]
A. Causebrook, D. J. Atkinson, and A. G. Jack, Fault ride-through of large wind farms using series dynamic braking resistors (March 2007),IEEE Trans. Power Syst., vol. 22, no. 3, p.966–975, Aug. 2007.
DOI: 10.1109/tpwrs.2007.901658
Google Scholar
[2]
European Wind Energy Association (EWEA), Large Scale Integration of Wind Energy in the European Power Supply: Analysis, Issues and Recommendations, 2005. [Online]. Available: http://www.ewea.org/.
Google Scholar
[3]
Wind Turbines Connected to Grids With Voltages above 100 kV—Technical Regulation for the Properties and the Regulation of Wind Turbines, Elkraft System and Eltra Regulation, version TF 3.2.5, Dec (2004)
Google Scholar
[4]
National Grid Company plc: The Grid Code, Issue 3, Revision 17, September (2006)
Google Scholar
[5]
Grid Connection Regulations for High and Extra High voltage, E.ON Netz GmbH, 1 April (2006)
Google Scholar
[6]
J. Ekanayake and N. Jenkins. Comparison of the Response of Doubly Fed and Fixed-Speed Induction Generator Wind Turbines to Changes in Network Frequency. IEEE Trans. Energy Conversion, Vol. 19, No. 4,, pages 800–802, 2004.
DOI: 10.1109/tec.2004.827712
Google Scholar
[7]
J. Morrenetal. Wind turbines emulating inertia and supporting primary frequency control,IEEE Trans. Power System. , vol. 21, no. 1,pp.433-434,Feb.2006.
DOI: 10.1109/tpwrs.2005.861956
Google Scholar
[8]
G. Ramtharan, J.B. Ekanayake and N. Jenkins, Frequency support from doubly fed induction generator wind turbines, IET Renew. Power Generation. 2007, 1, (1), p.3–9
DOI: 10.1049/iet-rpg:20060019
Google Scholar
[9]
R.G. Almeida and J. A. Peças Lopes, Participation of doubly fed induction wind generators in system frequency regulation. IEEE Trans on Power Systems, 2007, 22 (3):944-950.
DOI: 10.1109/tpwrs.2007.901096
Google Scholar
[10]
L.R. Changchien C.M. Hung, Y.C. Yin. Dynamic reserve allocation for system contingency by DFIG wind farms. IEEE Trans on Power Systems, 2008, 23(2): 729-73
DOI: 10.1109/tpwrs.2008.920071
Google Scholar
[11]
M. Akbari,Seyed M.madani; Participation of DFIG based wind turbines in improving short term frequency regulation, Electrical Engineering (ICEE), 2010 18th Iranian Conference on Digital Object Identifier: 2010 , Page(s): 874 - 879
DOI: 10.1109/iraniancee.2010.5506955
Google Scholar
[12]
M. Bhuiyan, D.Sundaram;Comparing and Evaluating Frequency Response characteristics of Conventional Power Plant with Wind Power Plant. http://webfiles.portal.chalmers.se/et/MSc/BhuiyanDinakarMSc.pdf
Google Scholar
[13]
P. Kundur, Power System Stability and Control. New York: McGraw-Hill, 1993.
Google Scholar
[14]
N.R. Ullah, Added Value for Network Operation. http://webfiles.portal.chalmers.se/et/PhD/UllahNayeemPhD.pdf
Google Scholar
[15]
N. R. Ullah, T. Thiringer, D. Karlsson,Temporary Primary Frequency Control Support by Variable Speed Wind Turbines –Potential and Applications, IEEE Trans.Power Systems, vol. 23, no. 2, pp.601-612,May 2008.
DOI: 10.1109/tpwrs.2008.920076
Google Scholar
[16]
G.C. Tarnowski, P.C. Kjar, P.E. Sorensen, J.O.stergaard, Variable Speed Wind Turbines Capability for Temporary Over-Production,Power & Energy Society General Meeting, 2009. PES '09. IEEE
DOI: 10.1109/pes.2009.5275387
Google Scholar
[17]
J. M. Mauricio, A. Marano, A. G. Mez-Exp Sito, Frequency regulation contribution through variable-speed wind energy conversion systems. IEEE Trans on Power Systems, 2009, 24(1): 173-179
DOI: 10.1109/tpwrs.2008.2009398
Google Scholar
[18]
O. Anaya-Lara, F. M. Hughes, N. Jenkins, and G. Strbac, Contribution of DFIG-based wind farms to power system short-term frequency regulation,IEE proceedings. Part C, Generation, Transmission, and Distribution . vol. 153,no. 2, p.164–170, 2006.
DOI: 10.1049/ip-gtd:20050264
Google Scholar
[19]
V.Chemmangot Nayar, W.Mochamad Ashari, W.L. Keerthipala,A grid-interactive photovoltaic uninterruptible power supply sys-tem using battery storage and a back up diesel generator, IEEE Transactions on Energy Conversion, Vol. 15, No. 3, pp.348-352, September 2000.
DOI: 10.1109/60.875502
Google Scholar