Power Generation Experiment of Direct Methanol Fuel Cell

Article Preview

Abstract:

An experiment of a single direct methanol fuel cell (DMFC) was conducted at Fuel Cell laboratory of Tsinghua University, China in collaboration with University of Tsukuba, Japan. Influences of the anodic methanol solution's concentration, the cathodic air flow rate, and the cathodic oxygen gas flow rate on the single DMFC performance were investigated to optimize operating conditions of the fuel cell. The experimental results have shown that the single DMFC can reach the peak power density of 0.170 W/cm2 with the current of 0.515 A/cm2 under the condition of the concentration of methanol solution of 2M and the flow rate of oxygen gas of 80 mL/min.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 347-353)

Pages:

3281-3285

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ahmet Lokurlu, Thomas Grube, Bernd Hohlein, and Detlef Stolten, Fuel cells for mobile and stationary applications—cost analysis for combined heat and power stations on the basis of fuel cells, Int J Hydrogen Energy. 28 (2003) 703-711.

DOI: 10.1016/s0360-3199(02)00242-2

Google Scholar

[2] R. Dillon, S. Srinivasan, A.S. Arico, and V. Antonucci, International activities in DMFC R&D: status of technologies and potential applications, J. Power Sources. 127 (2004) 112-126.

DOI: 10.1016/j.jpowsour.2003.09.032

Google Scholar

[3] Mark A.J. Cropper, Stefan Geiger, and David M. Jollie, Fuel cells: a survey of current developments, J. Power Sources. 131 (2004) 57-61.

DOI: 10.1016/j.jpowsour.2003.11.080

Google Scholar

[4] A. S. Arico, S. Srinivasan, and V. Antonucci, DMFCs:From Fundamental Aspects to Technology Development, Fuel Cells. 1 (2001) 133-161.

DOI: 10.1002/1615-6854(200107)1:2<133::aid-fuce133>3.0.co;2-5

Google Scholar

[5] Michael A. Hickner, Hossein Ghassemi, Yu Seung Kim, Brian R. Einsla, and James E. McGrath, Alternative Polymer Systems for Proton Exchange Membranes (PEMs), Chem. Rev. 104 (2004) 4587-4612.

DOI: 10.1021/cr020711a

Google Scholar

[6] M. P. Hogarth and T. R. Ralph, Catalysis for Low Temperature Fuel Cells, Platinum Metals Rev. 46 (2002) 146-164.

Google Scholar

[7] Ermete Antolini, Formation of carbon-supported PtM alloys for low temperature fuel cells: a review, Mater. Chem. Phys. 78 (2003) 563-573.

DOI: 10.1016/s0254-0584(02)00389-9

Google Scholar

[8] Christopher K. Dyer, Replacing the Battery in Portable Electronics, Sci. Am. 281 (1999) 88-93.

DOI: 10.1038/scientificamerican0799-88

Google Scholar

[9] Weimin Qian, David P. Wilkinson, Jun Shen, Haijiang Wang, and Jiujun Zhang, Architecture for portable direct liquid fuel cells, J. Power Sources. 154 (2006) 202-213.

DOI: 10.1016/j.jpowsour.2005.12.019

Google Scholar

[10] Anders Oedegaard and Christian Hentschel, Characterisation of a portable DMFC stack and a methanol-feeding concept, J. Power Sources. 158 (2006) 177-187.

DOI: 10.1016/j.jpowsour.2005.06.044

Google Scholar

[11] Yang Liu, Xiaofeng Xie, Yuming Shang, Rong Li, Liang Qi, Jianwei Guo, and V.K. Mathur, Power characteristics and fluid transfer in 40W direct methanol fuel cell stack, J. Power Sources. 164 (2007) 322-327.

DOI: 10.1016/j.jpowsour.2006.09.017

Google Scholar

[12] Jiahua Han and Hongtan Liu, Real time measurements of methanol crossover in a DMFC, J. Power Sources. 164 (2007) 166-173.

DOI: 10.1016/j.jpowsour.2006.09.105

Google Scholar

[13] Z. H. Wang and C. Y. Wang, Mathematical Modeling of Liquid-Feed Direct Methanol Fuel Cells, J. Electrochem. Soc. 150 (2003) A508-A519.

DOI: 10.1149/1.1559061

Google Scholar