Hydrogen Storage and Release by Redox Reaction of Iron Oxide Medium with Mo and Zr Additives

Abstract:

Article Preview

Chemical hydrogen storage and release of iron-based oxide mediums were investigated by hydrogen reduction and water splitting oxidation (Fe3O4 + 4H2 ⇌ 3Fe + 4H2O). In this study, all metal oxide mediums were prepared by coprecipitation method using urea solution as precipitant. The redox reactions of the mediums were conducted using a fixed bed quartz reactor under atmospheric pressure. The theoretical amount of hydrogen storage that can be obtained from the redox reaction of iron oxide is calculated to be 4.8wt% on the basis of 1g-Fe. However, in case of using the iron oxide medium without additives, the medium was rapidly deactivated due to the agglomeration of Fe metals in the hydrogen reduction step of repeated redox cycles. In this study, therefore, Mo and Zr additives were added to iron oxide to improve the reactivity of the medium and to prevent the agglomeration of that. As a result, the reactivity for oxidation of the mediums was largely improved with the addition of Mo additive. It was concluded that change in the valence of Mo cations affected the redox behavior of the mediums.

Info:

Periodical:

Advanced Materials Research (Volumes 347-353)

Edited by:

Weiguo Pan, Jianxing Ren and Yongguang Li

Pages:

3317-3320

DOI:

10.4028/www.scientific.net/AMR.347-353.3317

Citation:

Y. H. Kim et al., "Hydrogen Storage and Release by Redox Reaction of Iron Oxide Medium with Mo and Zr Additives", Advanced Materials Research, Vols. 347-353, pp. 3317-3320, 2012

Online since:

October 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.