An Efficient Metal Conductor Paste/Nanoporous Carbon Composite Counter Electrode for Dye-Sensitized Solar Cells

Article Preview

Abstract:

A novel counter electrode has been fabricated at low temperature using nanoporous carbon (NC) with about 35 nm pore size as based catalysis materials and silver conductor paste (SCP) as connecting adhesive. The efficiency of dye-sensitized solar cells (DSCs) employing this SCP/NC electrode reaches to 5.91%, which is 15% higher than that of DSCs with NC electrode. The improved efficiency is attributed to the enhancement in the fill factor and the short circuit photocurrent density. Electrochemical impedance spectroscopy reveals that all of charge transfer resistance, ohmic serial resistance and Nernst diffusion impedance of SCP/NC electrode decrease compared with NC electrode. Especially, the efficiency of 5.91% is comparable to that of DSCs with Pt electrode.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 347-353)

Pages:

390-393

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. O'Regan and M. Grätzel: Nature Vol. 353 (1991), p.737

Google Scholar

[2] T.N. Murakami, S. Ito, Q. Wang, M.K. Nazeeruddin, T. Bessho and I. Cesar: J. Electrochem. Soc. Vol. 153 (2006), p. A2255

Google Scholar

[3] C.K.N. Peh, L. Ke and G.W. Ho: Mater. Lett. Vol. 64 (2010), p.1372

Google Scholar

[4] T.C. Wei, C.C. Wan and Y.Y. Wang: Appl. Phys. Lett. Vol. 88 (2006), p.103122

Google Scholar

[5] A. Kay and M. Gräetzel: Sol. Energ. Mat. Sol. C. Vol. 44 (1996), p.99

Google Scholar

[6] T.N. Murakami and M. Grätzel: Inorg. Chim. Acta Vol. 361 (2008), p.572

Google Scholar

[7] K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J. Nakamura and K. Murata: Sol. Energ. Mat. Sol. C. Vol. 79 (2003), p.459

Google Scholar

[8] Z. Huang, X.H. Liu, K.X. Li, D.M. Li, Y.H. Luo and H. Li: Electrochem. Commun. Vol. 9 (2007), p.596

Google Scholar

[9] K.X. Li, Y.H. Luo, Z.X. Yu, M.H. Deng, D.M. Li and Q.B. Meng: Electrochem. Commun. Vol. 11 (2009), p.1346

Google Scholar

[10] S.Q. Fan, B. Fang, J.H. Kim, B. Jeong, C. Kim and J.S. Yu: Langmuir Vol. 26 (2010), p.13644

Google Scholar

[11] G.Q. Wang, W. Xing and S.P. Zhuo : J. Power Sources Vol. 194 (2009), p.568

Google Scholar

[12] E. Ramasamy, J. Chun and J. Lee: Carbon Vol. 48 (2010), p.4556

Google Scholar

[13] E. Ramasamy and J. Lee: Carbon Vol. 48 (2010), p.3715

Google Scholar

[14] S.J Xu, J.Li, G.J. Qiao, H.J. Wang and T.J. Lu: Carbon Vol. 47 (2009), p.2103

Google Scholar

[15] S.S. Kim, Y.C. Nah, Y.Y. Noh, J. J. and D.Y. Kim: Electrochim. Acta Vol. 51 (2006), p.3814

Google Scholar

[16] A. Hauch and A. Georg: Electrochim. Acta Vol. 46 (2001), p.3457

Google Scholar