A Novel Approach for Transversely Anisotropic 2D Sheet Metal Forming Simulation

Article Preview

Abstract:

In most FEM codes, the isotropic-elastic & transversely anisotropic-elastoplastic model using Hill's yield function has been widely adopted in 3D shell elements (modified to meet the plane stress condition) and 3D solid elements. However, when the 4-node quadrilateral plane strain or axisymmetric element is used for 2D sheet metal forming simulation, the above transversely anisotropic Hill model is not available in some FEM code like Ls-Dyna. A novel approach for explicit analysis of transversely anisotropic 2D sheet metal forming using 6-component Barlat yield function is elaborated in detail in this paper, the related formula between the material anisotropic coefficients in Barlat yield function and the Lankford parameters are derived directly. Numerical 2D results obtained from the novel approach fit well with the 3D solution .

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 347-353)

Pages:

3939-3945

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Hill. A theory of the yielding and plastic flow of anisotropic metals, Proc. Roy. Soc. Lond. A (1948), p.193.

Google Scholar

[2] F.Barlat, D.J. Lege, J.C. Brem. A six-component yield function for anisoropic metals, Int. J. Plasticity 7(1991), p.693.

DOI: 10.1016/0749-6419(91)90052-z

Google Scholar

[3] A.P. Karafillis, M.C Boyce. A general anisotropic yield criterion using bounds and a transformation weighting tensor, J. Mech. Phys. Solids 41(1993), p.1859.

DOI: 10.1016/0022-5096(93)90073-o

Google Scholar

[4] F. Barlat, Y. Maeda, , K. Chung, , M. Yanagawa, J.C. Brem, Y. Hayashida , D.J. Lege, et al. Yield function development for aluminum alloy sheet, J. Mech. Phys. Solids 45(1997), p.1727.

DOI: 10.1016/s0022-5096(97)00034-3

Google Scholar

[5] F.Barlat, R.C. Becker, Y. Hayashida, et al. Yielding description of solution strengthened aluminum alloys, Int. J. Plasticity 13(1997), p.385.

DOI: 10.1016/s0749-6419(97)80005-8

Google Scholar

[6] F. Bron, J. Besson. A yield function for anisotropic materials. Application to aluminum alloys, Int. J. Plasticity 21(2004), p.937.

DOI: 10.1016/j.ijplas.2003.06.001

Google Scholar

[7] D. Banabic, H. Aretz, D.S. Comsa, L. Paraianu. An improved analytical description of orthotropy in metallic sheets. Int. J. Plasticity 21(2005), p.493.

DOI: 10.1016/j.ijplas.2004.04.003

Google Scholar

[8] F. Barlat, H.Aretz, J.W. Yoon, etal. Linear transformation based anisotropic yield function. Int. J. Plasticity 21(2005), p.1009.

DOI: 10.1016/j.ijplas.2004.06.004

Google Scholar

[9] J. O. Hallquist, LS-DYNA Keyword User's Manual, Livermore Software Technology Corp., Livermore( 2001 )

Google Scholar