Analytical Approach to Time-Fractional Partial Differential Equations in Fluid Mechanics

Article Preview

Abstract:

The generalized differential transform method is implemented for solving time-fractional partial differential equations in fluid mechanics. This method is based on the two-dimensional differential transform method (DTM) and generalized Taylor’s formula. Results obtained by using the scheme presented here agree well with the numerical results presented elsewhere. The results reveal the method is feasible and convenient for handling approximate solutions of time-fractional partial differential equations.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 347-353)

Pages:

463-466

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Momani: Chaos Solitons Fract. 28 (4) (2006) 930-937.

Google Scholar

[2] S. Momani, Z. Odibat: Phys. Lett. A 355 (2006) 271-279.

Google Scholar

[3] X. H. Chen: Chinese Physics Letters, 24(1): (2007) 1989-1991

Google Scholar

[4] J. H. He: Comput. Methods Appl. Mech. Engrg. 167 (1998) 57-68.

Google Scholar

[5] Z. Odibat, S. Momani: Int. J. Nonlinear Sci. Numer. Simul. 7 (1) (2006) 15-27.

Google Scholar

[6] N. Bildik, A. Konuralp, F. Bek, S. Kucukarslan: Appl. Math. Comput. 172 (2006) 551-567.

Google Scholar

[7] Z. Odibat, N. Shawafeh: Appl. Math. Comput. 186 (2007) 286-293.

Google Scholar

[8] I. Podlubny: Frac. Calc. Appl. Anal. 5 (2002) 367-386.

Google Scholar

[9] M. Caputo: Part II, J. Roy. Astr. Soc. 13 (1967) 529-539.

Google Scholar

[10] Z. Odibat, N. Shawagfeh: Appl. Math. Comput. 186 (2007) 286-293.

Google Scholar

[11] S.Momani, Z.Odibat: Appl. Math. Comput. 220 (2008) 85-95

Google Scholar

[12] H. Jafari, S. Momani: Phys. Lett. A 370 (2007) 388-396.

Google Scholar