[1]
Riekie, G. J., P. N. Williams, et al. (2006). "The potential for kelp manufacture to lead to arsenic pollution of remote Scottish islands." Chemosphere 65(2): 332-42.
DOI: 10.1016/j.chemosphere.2006.02.025
Google Scholar
[2]
Franz, E., P. Romkens, et al. (2008). "A chain modeling approach to estimate the impact of soil cadmium pollution on human dietary exposure." J Food Prot 71(12): 2504-13.
DOI: 10.4315/0362-028x-71.12.2504
Google Scholar
[3]
Bopp, C. J. t., C. C. Lundstrom, et al. "Uranium 238U/235U isotope ratios as indicators of reduction: results from an in situ biostimulation experiment at Rifle, Colorado, U.S.A." Environ Sci Technol 44(15): 5927-33.
DOI: 10.1021/es100643v
Google Scholar
[4]
Tapia-Rodriguez, A., A. Luna-Velasco, et al. "Anaerobic bioremediation of hexavalent uranium in groundwater by reductive precipitation with methanogenic granular sludge." Water Res 44(7): 2153-62.
DOI: 10.1016/j.watres.2009.12.030
Google Scholar
[5]
Vandenhove, H. and M. Van Hees (2004). "Phytoextraction for clean-up of low-level uranium contaminated soil evaluated." J Environ Radioact 72(1-2): 41-5.
DOI: 10.1016/s0265-931x(03)00184-x
Google Scholar
[6]
Langley, S., A. G. Gault, et al. (2009). "Sorption of strontium onto bacteriogenic iron oxides." Environ Sci Technol 43(4): 1008-14.
DOI: 10.1021/es802027f
Google Scholar
[7]
Lloyd, J. R. and J. C. Renshaw (2005). "Bioremediation of radioactive waste: radionuclide-microbe interactions in laboratory and field-scale studies." Curr Opin Biotechnol 16(3): 254-60.
DOI: 10.1016/j.copbio.2005.04.012
Google Scholar
[8]
Ruggiero, C. E., H. Boukhalfa, et al. (2005). "Actinide and metal toxicity to prospective bioremediation bacteria." Environ Microbiol 7(1): 88-97.
Google Scholar
[9]
Langley, S., A. G. Gault, et al. (2009). "Sorption of strontium onto bacteriogenic iron oxides." Environ Sci Technol 43(4): 1008-14.
DOI: 10.1021/es802027f
Google Scholar
[10]
Sitsler, R. B. and S. K. DeMers (2003). "Remediation of Hanford's N-reactor liquid waste disposal sites." Health Phys 84(2 Suppl): S41-6.
DOI: 10.1097/00004032-200302001-00014
Google Scholar
[11]
Francis, A. J. and C. J. Dodge (2008). "Bioreduction of uranium(VI) complexed with citric acid by Clostridia affects its structure and solubility." Environ Sci Technol 42(22): 8277-82.
DOI: 10.1021/es801045m
Google Scholar
[12]
Schubert, M., M. Balcazar, et al. (2007). "Combination of radon and stable isotope analysis as a tool for decision support concerning the remediation of NAPL-contaminated sites." Isotopes Environ Health Stud 43(3): 215-26.
DOI: 10.1080/10256010701550708
Google Scholar
[13]
Beazley, M. J., R. J. Martinez, et al. (2007). "Uranium biomineralization as a result of bacterial phosphatase activity: insights from bacterial isolates from a contaminated subsurface." Environ Sci Technol 41(16): 5701-7.
DOI: 10.1021/es070567g
Google Scholar
[14]
Bonaventura, C. and F. M. Johnson (1997). "Healthy environments for healthy people: bioremediation today and tomorrow." Environ Health Perspect 105 Suppl 1: 5-20.
DOI: 10.1289/ehp.97105s15
Google Scholar
[15]
Bopp, C. J. t., C. C. Lundstrom, et al. "Uranium 238U/235U isotope ratios as indicators of reduction: results from an in situ biostimulation experiment at Rifle, Colorado, U.S.A." Environ Sci Technol 44(15): 5927-33.
DOI: 10.1021/es100643v
Google Scholar
[16]
Meharg, A. A., C. Deacon, et al. (2006). "Ancient manuring practices pollute arable soils at the St Kilda World Heritage Site, Scottish North Atlantic." Chemosphere 64(11): 1818-28.
DOI: 10.1016/j.chemosphere.2006.01.076
Google Scholar
[17]
Rufyikiri, G., J. Wannijn, et al. (2006). "Effects of phosphorus fertilization on the availability and uptake of uranium and nutrients by plants grown on soil derived from uranium mining debris."Environ Pollut 141(3): 420-7.
DOI: 10.1016/j.envpol.2005.08.072
Google Scholar
[18]
Wall, J. D. and L. R. Krumholz (2006). "Uranium reduction." Annu Rev Microbiol 60: 149-66.
Google Scholar
[19]
Rakesh Yadav .,Pooja Arora , et al. (2006). "Perspectives for genetic engineering of poplars for enhanced phytoremediation abilities." Ecotoxicology (2010) 19:1574–1588.
DOI: 10.1007/s10646-010-0543-7
Google Scholar
[20]
Tardiff, M. F. and D. Katzman (2007). "Estimating contaminant attenuation half-lives in alluvial groundwater systems." J Environ Monit 9(3): 266-74.
DOI: 10.1039/b700494j
Google Scholar
[21]
Priha, O., K. Hallamaa, et al. (2004). "Detection of Bacillus cereus group bacteria from cardboard and paper with real-time PCR." J Ind Microbiol Biotechnol 31(4): 161-9.
DOI: 10.1007/s10295-004-0125-x
Google Scholar
[22]
Zielhuis, S. W., J. F. Nijsen, et al. (2006). "Removal of chloroform from biodegradable therapeutic microspheres by radiolysis." Int J Pharm 315(1-2): 67-74.
DOI: 10.1016/j.ijpharm.2006.02.010
Google Scholar
[23]
Franz, E., P. Romkens, et al. (2008). "A chain modeling approach to estimate the impact of soil cadmium pollution on human dietary exposure." J Food Prot 71(12): 2504-13.
DOI: 10.4315/0362-028x-71.12.2504
Google Scholar
[24]
Vandenhove, H. and M. Van Hees (2005). "Fibre crops as alternative land use for radioactively contaminated arable land." J Environ Radioact 81(2-3): 131-41.
DOI: 10.1016/j.jenvrad.2005.01.002
Google Scholar