Establishion of Radioactive Contamination Monitoring Network and Bioremediation of the Soil around the Nuclear Facilities in China

Article Preview

Abstract:

The nuclear facilities accelerated continuously with the rapid development of the nuclear industry for the increasing demand for energy in China. The nuclear facilities were widely distributed in coastal areas or remote mountainous areas. With the rapid development of the nuclear industry, nuclear fuel cycle system, such as uranium mining and milling, component manufacturing, transportation and disposal of spent fuel, radioactive waste disposal, also would be large-scale distributed, so it is no doubt that the environmental impact would become increasingly prominent and severe. Radionuclides contaminate the environment through the gas, liquid and solid around nuclear facilities, and in case of radioactive leakage, the contamination would affect the soil and public health through food chain. This article aims to establish a nationwide network of early warning detection of radioactivity, the formation of nuclear facilities, radioactive soil around the monitoring and early warning mechanisms, and regularly publish relevant monitoring information, and to study bioremediation of radioactive contaminated soil, to eliminate the public about nuclear discoloration fears and concerns, promote economic and social development , and to keep the nuclear facilities and nature in harmony through environmental protection.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 347-353)

Pages:

512-521

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Riekie, G. J., P. N. Williams, et al. (2006). "The potential for kelp manufacture to lead to arsenic pollution of remote Scottish islands." Chemosphere 65(2): 332-42.

DOI: 10.1016/j.chemosphere.2006.02.025

Google Scholar

[2] Franz, E., P. Romkens, et al. (2008). "A chain modeling approach to estimate the impact of soil cadmium pollution on human dietary exposure." J Food Prot 71(12): 2504-13.

DOI: 10.4315/0362-028x-71.12.2504

Google Scholar

[3] Bopp, C. J. t., C. C. Lundstrom, et al. "Uranium 238U/235U isotope ratios as indicators of reduction: results from an in situ biostimulation experiment at Rifle, Colorado, U.S.A." Environ Sci Technol 44(15): 5927-33.

DOI: 10.1021/es100643v

Google Scholar

[4] Tapia-Rodriguez, A., A. Luna-Velasco, et al. "Anaerobic bioremediation of hexavalent uranium in groundwater by reductive precipitation with methanogenic granular sludge." Water Res 44(7): 2153-62.

DOI: 10.1016/j.watres.2009.12.030

Google Scholar

[5] Vandenhove, H. and M. Van Hees (2004). "Phytoextraction for clean-up of low-level uranium contaminated soil evaluated." J Environ Radioact 72(1-2): 41-5.

DOI: 10.1016/s0265-931x(03)00184-x

Google Scholar

[6] Langley, S., A. G. Gault, et al. (2009). "Sorption of strontium onto bacteriogenic iron oxides." Environ Sci Technol 43(4): 1008-14.

DOI: 10.1021/es802027f

Google Scholar

[7] Lloyd, J. R. and J. C. Renshaw (2005). "Bioremediation of radioactive waste: radionuclide-microbe interactions in laboratory and field-scale studies." Curr Opin Biotechnol 16(3): 254-60.

DOI: 10.1016/j.copbio.2005.04.012

Google Scholar

[8] Ruggiero, C. E., H. Boukhalfa, et al. (2005). "Actinide and metal toxicity to prospective bioremediation bacteria." Environ Microbiol 7(1): 88-97.

Google Scholar

[9] Langley, S., A. G. Gault, et al. (2009). "Sorption of strontium onto bacteriogenic iron oxides." Environ Sci Technol 43(4): 1008-14.

DOI: 10.1021/es802027f

Google Scholar

[10] Sitsler, R. B. and S. K. DeMers (2003). "Remediation of Hanford's N-reactor liquid waste disposal sites." Health Phys 84(2 Suppl): S41-6.

DOI: 10.1097/00004032-200302001-00014

Google Scholar

[11] Francis, A. J. and C. J. Dodge (2008). "Bioreduction of uranium(VI) complexed with citric acid by Clostridia affects its structure and solubility." Environ Sci Technol 42(22): 8277-82.

DOI: 10.1021/es801045m

Google Scholar

[12] Schubert, M., M. Balcazar, et al. (2007). "Combination of radon and stable isotope analysis as a tool for decision support concerning the remediation of NAPL-contaminated sites." Isotopes Environ Health Stud 43(3): 215-26.

DOI: 10.1080/10256010701550708

Google Scholar

[13] Beazley, M. J., R. J. Martinez, et al. (2007). "Uranium biomineralization as a result of bacterial phosphatase activity: insights from bacterial isolates from a contaminated subsurface." Environ Sci Technol 41(16): 5701-7.

DOI: 10.1021/es070567g

Google Scholar

[14] Bonaventura, C. and F. M. Johnson (1997). "Healthy environments for healthy people: bioremediation today and tomorrow." Environ Health Perspect 105 Suppl 1: 5-20.

DOI: 10.1289/ehp.97105s15

Google Scholar

[15] Bopp, C. J. t., C. C. Lundstrom, et al. "Uranium 238U/235U isotope ratios as indicators of reduction: results from an in situ biostimulation experiment at Rifle, Colorado, U.S.A." Environ Sci Technol 44(15): 5927-33.

DOI: 10.1021/es100643v

Google Scholar

[16] Meharg, A. A., C. Deacon, et al. (2006). "Ancient manuring practices pollute arable soils at the St Kilda World Heritage Site, Scottish North Atlantic." Chemosphere 64(11): 1818-28.

DOI: 10.1016/j.chemosphere.2006.01.076

Google Scholar

[17] Rufyikiri, G., J. Wannijn, et al. (2006). "Effects of phosphorus fertilization on the availability and uptake of uranium and nutrients by plants grown on soil derived from uranium mining debris."Environ Pollut 141(3): 420-7.

DOI: 10.1016/j.envpol.2005.08.072

Google Scholar

[18] Wall, J. D. and L. R. Krumholz (2006). "Uranium reduction." Annu Rev Microbiol 60: 149-66.

Google Scholar

[19] Rakesh Yadav .,Pooja Arora , et al. (2006). "Perspectives for genetic engineering of poplars for enhanced phytoremediation abilities." Ecotoxicology (2010) 19:1574–1588.

DOI: 10.1007/s10646-010-0543-7

Google Scholar

[20] Tardiff, M. F. and D. Katzman (2007). "Estimating contaminant attenuation half-lives in alluvial groundwater systems." J Environ Monit 9(3): 266-74.

DOI: 10.1039/b700494j

Google Scholar

[21] Priha, O., K. Hallamaa, et al. (2004). "Detection of Bacillus cereus group bacteria from cardboard and paper with real-time PCR." J Ind Microbiol Biotechnol 31(4): 161-9.

DOI: 10.1007/s10295-004-0125-x

Google Scholar

[22] Zielhuis, S. W., J. F. Nijsen, et al. (2006). "Removal of chloroform from biodegradable therapeutic microspheres by radiolysis." Int J Pharm 315(1-2): 67-74.

DOI: 10.1016/j.ijpharm.2006.02.010

Google Scholar

[23] Franz, E., P. Romkens, et al. (2008). "A chain modeling approach to estimate the impact of soil cadmium pollution on human dietary exposure." J Food Prot 71(12): 2504-13.

DOI: 10.4315/0362-028x-71.12.2504

Google Scholar

[24] Vandenhove, H. and M. Van Hees (2005). "Fibre crops as alternative land use for radioactively contaminated arable land." J Environ Radioact 81(2-3): 131-41.

DOI: 10.1016/j.jenvrad.2005.01.002

Google Scholar