Ag Catalyst on Ordered Mesoporous Carbon with High Electro-Oxidation Activity for Formaldehyde

Article Preview

Abstract:

Ag nanoparticles have been fabricated on the surface of CMK-3 mesoporous carbon through an immersion-electrodeposition (IE) technique. Transmission electron microscopy analysis indicated that it was a facile approach to electrochemically prepare nano-sized Ag clusters. Electrochemical experiments showed that Ag nanoproducts were efficient electrocatalysts for anodic oxidation of formaldehyde in alkaline solutions, and as the reduced of the potential value, the electrocatalytic peak current density for the formaldehyde electro-oxidation reaction was increased gradually. Also, the electrocatalytic activity of Ag/CMK-3 nanocatalysts for formaldehyde electro-oxidation is higher than that of Ag/XC-72 nanocatalysts. These findings represented a significant step toward the implementation of individual Ag/CMK-3 nanocatalysts as anodic materials in fuel cells and sensors.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 347-353)

Pages:

494-497

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.Y. Cao, D.J. Guo. H.L. Li: J. Power Sources Vol. 162 (2006), pp.1094-1098

Google Scholar

[2] B.R. Sathe, D.B. Shinde, V.K. Pillai: J. Phys. Chem. C Vol. 13 (2009), pp.9616-9622

Google Scholar

[3] G.Y. Gao, D.J. Guo, C. Wang, H.L. Li: Electrochem. Commun. Vol. 9 (2007), pp.1582-1586

Google Scholar

[4] E. Sanli, H. Celikkan, B.Z. Uysal, M.L. Aksu: Int. J. Hydrogen Energy Vol. 31 (2006), pp.1920-1924

Google Scholar

[5] D.J. Guo, H.L. Li: Carbon Vol. 43 (2005), pp.1259-1264

Google Scholar

[6] J.L. Geng, Y.P. Bi, G.X. Lu: Electrochem. Commun. Vol. 11 (2009), pp.1255-1258

Google Scholar

[7] F. Su, J. Zeng, Y. Yu, L. Lv, J.Y. Lee, X.S. Zhao: Carbon 43 (2005), pp.2366-2373

Google Scholar

[8] M.L. Lin, C.C. Huang, M.Y. Lo, C.Y. Mou: J. Phys. Chem. C Vol. 112 (2008), pp.867-873

Google Scholar

[9] S.H. Liu, R.F. Lu, S.J. Huang, A.Y. Lo, S.H. Chien, S.B. Liu, Chem. Commun. (2006), pp.3435-3437

Google Scholar

[10] J.S. Lee, S.H. Joo, R. Ryoo: J. Am. Chem. Soc. Vol. 124 (2002), pp.1156-1157

Google Scholar

[11] R. Ryoo, S.H. Joo, D.J. You, M. Kruk, M. Jaroniec: Adv. Mater. Vol. 13 (2001), pp.677-681

DOI: 10.1002/1521-4095(200105)13:9<677::aid-adma677>3.0.co;2-c

Google Scholar

[12] M. Zhou, L. Shang, B.L. Li, L.J. Huang, S.J. Dong: Electrochem. Commun. Vol. 10 (2008), pp.859-863

Google Scholar

[13] H. Chang, S.H. Joo, C. Pak: J. Mater. Chem. Vol. 17 (2007), pp.3078-3088

Google Scholar

[14] S. Zhu, H. Zhou, M. Hibino, I. Honma, M. Ichihara: Adv. Funct. Mater. Vol. 15 (2005), pp.381-386

Google Scholar

[15] H. Yang, W. Vogel, C. Lamy, Alonso-Vante N: J. Phys. Chem. B Vol. 108 (2004), pp.11024-11034

Google Scholar

[16] S.Z. Zhang, W.H. Ni, X.S. Kou, M.H. Yeung, L.D. Sun, J.F. Wang, C.H. Yan: Adv. Funct. Mater. Vol. 17 (2007), pp.3258-3266

Google Scholar

[17] L.B. Kong, H. Li, J. Zhang, Y.C. Luo, L. Kang: Appl. Surf. Sci. Vol. 256 (2010), pp.6688-6693

Google Scholar