An Online LS-SVM Prediction Model of Building Space Cooling Load

Abstract:

Article Preview

Building space cooling load affected by lots of factors,was transient, multi-dimensional and highly interactive. A model of online least squares support vector machine (LS-SVM) was established to forecast the space cooling load of building, and correlation analysis was used to find out the main influencing factors, such as, dry-bulb temperature, solar irradiance, and so on. As an example, the hourly space cooling load of an office building in shanghai was investigated. The hourly space cooling load was firstly calculated by the simulation software of DEST, and then, an online LS-SVM model was presented to forecast the load. The simulation results showed that the online LS-SVM model was effective for space cooling load prediction.

Info:

Periodical:

Advanced Materials Research (Volumes 354-355)

Edited by:

Hao Zhang, Yang Fu and Zhong Tang

Pages:

789-793

DOI:

10.4028/www.scientific.net/AMR.354-355.789

Citation:

S. H. Cao et al., "An Online LS-SVM Prediction Model of Building Space Cooling Load", Advanced Materials Research, Vols. 354-355, pp. 789-793, 2012

Online since:

October 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.