Axial MHD Flow of a Generalized Oldroyd-B Fluid Due to Two Oscillating Cylinders

Article Preview

Abstract:

Axial magnetohydrodynamic (MHD) flows for Oldroyd-B fluid are investigated between two cylinders. The motion of the fluid is produced by the two oscillating cylinders. The fractional calculus approach is introduced to establish the constitutive relationship of a viscolastic fluid. Velocity field and shear stress of the motion are determined in terms of Bessel function and generalized Mittag-Leffler function by using Laplace transform and Hankel transform. The influence of pertinent parameters on the flows is delineated and appropriate conclusions are drawn.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 354-355)

Pages:

83-86

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. Podlubny: Fractional Differential Equations ( Academic Press, New York 1999).

Google Scholar

[2] Y.Q. Liu, L.C. Zheng, X.X. Zhang: Unsteady MHD Couette flow of a generalized Oldroyd-B fluid with fractional derivative. Comput. Math. Appl. Vol. 61 (2011), p.443.

DOI: 10.1016/j.camwa.2010.11.021

Google Scholar

[3] L.C. Zheng, Y.Q. Liu, X.X. Zhang: Exact solutions for MHD flow of generalized Oldroyd-B fluid due to an infinite accelerating plate. Math. Comput. Model. 54 (2011), p.780.

DOI: 10.1016/j.mcm.2011.03.025

Google Scholar

[4] S. Hyder Ali Muttaqi Shah, M. Khan, H.T.Qi: Exact solutions for a viscoelastic fluid with the generalized Oldroyd-B model. Nonlinear Anal. RWA, Vol. 10 (2009), p.2590.

DOI: 10.1016/j.nonrwa.2008.03.012

Google Scholar

[5] S. Hyder Ali Muttaqi Shah: Some accelerated flows of generalized Oldroyd-B fluid between two side walls perpendicular to the plate. Nonlinear Anal. RWA, Vol. 10 (2009), p.2146.

DOI: 10.1016/j.nonrwa.2008.03.023

Google Scholar

[6] D. K. Tong, X.M. Zhang, X.H. Zhang: Unsteady helical flows of a generalized Oldroyd-B fluid. J. Non-Newtonian Fluid Mech. Vol. 156 (2009), p.75.

DOI: 10.1016/j.jnnfm.2008.07.004

Google Scholar

[7] A. Mahmood, S.Parveen, A. Ar.a, N. A. Khan: Exact analytical solutions for the unsteady flow of a non-Newtonian fluid between two cylinders with fractional derivative model. Commun Nonlinear Sci Numer Simular, Vol. 14 (2009), p.3309.

DOI: 10.1016/j.cnsns.2009.01.017

Google Scholar

[8] H.T. Qi, H. Jin: Unsteady helical flows of a generalized Oldroyd-B fluid with fractional derivative. Nonlinear anal. RWA, Vol. 10 (2009), p.2700.

DOI: 10.1016/j.nonrwa.2008.07.008

Google Scholar

[9] C. Fetecau, Corina Fetecau: Starting solutions for the motion of a second grade fluid due to longitudinal and torsional oscillations of a circular cylinder. Int. J. Eng. Sci. Vol. 44 (2006), p.788.

DOI: 10.1016/j.ijengsci.2006.04.010

Google Scholar

[10] C. Fetecau, A. Mahmood, Corina Fetecau, D. Vieru: Some exact solutions for the helical flow of a generalized Oldroyd-B fluid in a circular cylinder. Comput. Math. Appl. Vol. 56 (2008), p.3096.

DOI: 10.1016/j.camwa.2008.07.003

Google Scholar

[11] Corina Fetecau, T. Hayat, Constantin Fetecau: Starting solutions for oscillating motions of Oldroyd-B fluids in cylindrical domains. J. Non-Newtonian Fluid Mech. Vol. 153 (2008), p.191.

DOI: 10.1016/j.jnnfm.2008.02.005

Google Scholar

[12] T. Hayat, M. Sajid: Homotopy analysis of MHD boundary layer flow of an upper-convected Maxwell fluid. Int. J. Eng. Sci. Vol. 45 (2007), p.393.

DOI: 10.1016/j.ijengsci.2007.04.009

Google Scholar

[13] T. Hayat, Z. Abbas, M. Sajid: MHD stagnation-point flow of an upper-convected Maxwell fluid over a stretching surface. Chaos, Solitons & Fractals, Vol. 39 (2009), p.840.

DOI: 10.1016/j.chaos.2007.01.067

Google Scholar

[14] M. Khan, T. Hayat, S. Asghar: Exact solution for MHD flow of a generalized Oldroyd-B fluid with modified Darcy's law. Int. J. Eng. Sci. Vol. 44 (2006), p.333.

DOI: 10.1016/j.ijengsci.2005.12.004

Google Scholar