[1]
I. Podlubny: Fractional Differential Equations ( Academic Press, New York 1999).
Google Scholar
[2]
Y.Q. Liu, L.C. Zheng, X.X. Zhang: Unsteady MHD Couette flow of a generalized Oldroyd-B fluid with fractional derivative. Comput. Math. Appl. Vol. 61 (2011), p.443.
DOI: 10.1016/j.camwa.2010.11.021
Google Scholar
[3]
L.C. Zheng, Y.Q. Liu, X.X. Zhang: Exact solutions for MHD flow of generalized Oldroyd-B fluid due to an infinite accelerating plate. Math. Comput. Model. 54 (2011), p.780.
DOI: 10.1016/j.mcm.2011.03.025
Google Scholar
[4]
S. Hyder Ali Muttaqi Shah, M. Khan, H.T.Qi: Exact solutions for a viscoelastic fluid with the generalized Oldroyd-B model. Nonlinear Anal. RWA, Vol. 10 (2009), p.2590.
DOI: 10.1016/j.nonrwa.2008.03.012
Google Scholar
[5]
S. Hyder Ali Muttaqi Shah: Some accelerated flows of generalized Oldroyd-B fluid between two side walls perpendicular to the plate. Nonlinear Anal. RWA, Vol. 10 (2009), p.2146.
DOI: 10.1016/j.nonrwa.2008.03.023
Google Scholar
[6]
D. K. Tong, X.M. Zhang, X.H. Zhang: Unsteady helical flows of a generalized Oldroyd-B fluid. J. Non-Newtonian Fluid Mech. Vol. 156 (2009), p.75.
DOI: 10.1016/j.jnnfm.2008.07.004
Google Scholar
[7]
A. Mahmood, S.Parveen, A. Ar.a, N. A. Khan: Exact analytical solutions for the unsteady flow of a non-Newtonian fluid between two cylinders with fractional derivative model. Commun Nonlinear Sci Numer Simular, Vol. 14 (2009), p.3309.
DOI: 10.1016/j.cnsns.2009.01.017
Google Scholar
[8]
H.T. Qi, H. Jin: Unsteady helical flows of a generalized Oldroyd-B fluid with fractional derivative. Nonlinear anal. RWA, Vol. 10 (2009), p.2700.
DOI: 10.1016/j.nonrwa.2008.07.008
Google Scholar
[9]
C. Fetecau, Corina Fetecau: Starting solutions for the motion of a second grade fluid due to longitudinal and torsional oscillations of a circular cylinder. Int. J. Eng. Sci. Vol. 44 (2006), p.788.
DOI: 10.1016/j.ijengsci.2006.04.010
Google Scholar
[10]
C. Fetecau, A. Mahmood, Corina Fetecau, D. Vieru: Some exact solutions for the helical flow of a generalized Oldroyd-B fluid in a circular cylinder. Comput. Math. Appl. Vol. 56 (2008), p.3096.
DOI: 10.1016/j.camwa.2008.07.003
Google Scholar
[11]
Corina Fetecau, T. Hayat, Constantin Fetecau: Starting solutions for oscillating motions of Oldroyd-B fluids in cylindrical domains. J. Non-Newtonian Fluid Mech. Vol. 153 (2008), p.191.
DOI: 10.1016/j.jnnfm.2008.02.005
Google Scholar
[12]
T. Hayat, M. Sajid: Homotopy analysis of MHD boundary layer flow of an upper-convected Maxwell fluid. Int. J. Eng. Sci. Vol. 45 (2007), p.393.
DOI: 10.1016/j.ijengsci.2007.04.009
Google Scholar
[13]
T. Hayat, Z. Abbas, M. Sajid: MHD stagnation-point flow of an upper-convected Maxwell fluid over a stretching surface. Chaos, Solitons & Fractals, Vol. 39 (2009), p.840.
DOI: 10.1016/j.chaos.2007.01.067
Google Scholar
[14]
M. Khan, T. Hayat, S. Asghar: Exact solution for MHD flow of a generalized Oldroyd-B fluid with modified Darcy's law. Int. J. Eng. Sci. Vol. 44 (2006), p.333.
DOI: 10.1016/j.ijengsci.2005.12.004
Google Scholar