Nickel Induced Oxidative Stress and the Responses of SOD Isoenzymes in Microcystis aeruginosa FACHB-905

Article Preview

Abstract:

The laboratory experiment was conducted to investigated the effect of nickel over a concentration gradient of 0.1~1.00 mg/L on biomass ( indicated by absorbance of cell culture at 663nm wavelength ), superoxide anion (O2ˉ), malondialdehyde (MDA), and superoxide dismutase (SOD) in the cyanobacterium Microcystis aeruginosa FACHB 905 isolated from Dianchi Lake, south west of China . The results showed: (1) M. aeruginosa could live normally in Ni (II)-absence culture medium,but 0.3 mg/L Ni(II) was the fittest concentration for test M. aeruginosa, in which biomass and SOD activity were highest among all test cultures; (2) Ni(II) induced O2ˉ and MDA in M. aeruginosa cells under the experimental condition, showing that Ni(II) could influence on M. aeruginosa by inducing oxidative stress; (3) Fe-SOD and Mn-SOD were found in M. aeruginosa and both of them were induced by lower Ni(II) but inhibited by higher concentration. The multiformity of SOD isoenzymes enhance the resistance of M. aeruginosa to oxygen stress induced by unfavorable condition, which explained that M. aeruginosa is the preponderant species in badly polluted Dianchi Lake water for long period.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 356-360)

Pages:

119-126

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Sanità di Tippi, R. Gabbrielli, Response to cadium in higher plants, Environ. Exp.Bot. 41 (1999) 105-130.

Google Scholar

[2] H. Clijsters, A. Cuypers, J. Vangronsveld, Physiological responses to heavy metals in higher plants; defense against oxidative stress, Z. Naturforsch. 54c (1999) 730-734.

DOI: 10.1515/znc-1999-9-1018

Google Scholar

[3] C.H. Foyer, M. Lelandais, K.J. Kunert, Photooxidative stress in plants, Physio. Plant. 72 (1994) 681-689.

Google Scholar

[4] A. Hegedüs, S. Erdei and G. Horváth, Comparative studies of H2O2 detoxifying enzymes in green and greening barleyseedlings under cadmium stress, Plant Sci. 160 (2001) 1085-1093.

DOI: 10.1016/s0168-9452(01)00330-2

Google Scholar

[5] O.K. Okamoto, P. Colepicolo, Response of superoxide dismutase to pollutant metal stress in the marine dinoflagellate Gonyaulax polyedra, Comp. Biochem. Physiol. 119 (1998) 67-73.

DOI: 10.1016/s0742-8413(97)00192-8

Google Scholar

[6] V. Athanasios, V. Thomais, D. Manos, S. Michael, Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants, Ecotoxiol. Environ. safety, 64 (2006) 178-189.

DOI: 10.1016/j.ecoenv.2005.03.013

Google Scholar

[7] G. Florence, J.B. Maria, Does zinc produce reactive oxygen species in ruditapes decussates? Ecotoxicol. Environ.Safety, 57 (2004) 399-409.

DOI: 10.1016/j.ecoenv.2003.07.002

Google Scholar

[8] C. Kyung-sil, S. Pauli, P. Marianne, Oxidative stress tolerance in the filamentous green algae Cladophora glomerata and Enteromorpha ahlneriana, J. Exp.Mar. Biol. Ecol. 298 (2004) 111-123.

DOI: 10.1016/j.jembe.2003.08.007

Google Scholar

[9] Z.X. Wu, N.Q. Gan, Q. Huang, L.R. Song, Response of Microcystis to copper stress----Do phenotypes of Microcystis make a difference in stress tolerance? Environ. Pollut. 147 (2007) 324-330.

DOI: 10.1016/j.envpol.2006.05.022

Google Scholar

[10] R. Khanna-chopra, S. Sabarinath, Heat-stable chloroplastic Cu/Zn superoxide dismutase in Chenopodium murale, Biochem. Biophys. Res. Commun. 320 (2004) 1187-1192.

DOI: 10.1016/j.bbrc.2004.06.071

Google Scholar

[11] M. Awasthi, L.C. Raib, Toxicity of nickel, zinc, and cadmium to nitrate uptake in free and immobilized cells of Scenedesmus quadricauda, Ecotoxicol. Environ. Safety, 61 (2005) 268-272.

DOI: 10.1016/j.ecoenv.2004.12.018

Google Scholar

[12] D. Kaplan Y. M. Heimer, A. Abeliovich and P. B. Goldsbrough, Cadium toxicity and resistance in Chlorella sp., Plant Sci. 109 (1995) 129-137.

DOI: 10.1016/0168-9452(95)04165-q

Google Scholar

[13] S. Sarita, G. Manisha, C. Prakash, Oxidative stress induced by iron in hytrilla verticillata (l.f.) royle: response of antioxidants, Ecotoxicol. Environ. Safety, 38 (1997) 286-291.

DOI: 10.1006/eesa.1997.1598

Google Scholar

[14] P. Madoni, The acute toxicity of nickel to freshwater ciliates, Environ. Pollut. 109 (2000) 53-59.

DOI: 10.1016/s0269-7491(99)00226-2

Google Scholar

[15] R.A. Gomes-Junior, C.A. Moldes, F.S. Delite, P.L. Gratão, P. Mazzafera, P.J. Lea and R.A. Azevedo, ickel elicits a fast antioxidant response in Coffea Arabica cells, Plant Physiol. Biochem. 44 (2006) 420-429.

DOI: 10.1016/j.plaphy.2006.06.002

Google Scholar

[16] J.K. Dunnick, M.R. Elwell, A.E. Radowsky, Comparative carcinogenic effects of nickel subsulfide, nickel oxide, or nickel hexahydrate chronic exposures in the lung, Cancer Res. 55 (1995) 5251-5256.

Google Scholar

[17] B. Salem,C. Abdelilah, E.F. Ezzeddine, Nickel-induced oxidative damage and antioxidant responses in Zae mays shoots, Plant hysiol. Biochem. 36 (1998) 689-694.

DOI: 10.1016/s0981-9428(98)80018-1

Google Scholar

[18] C.F. Zhou, G.R. Wu, C.M. Lu, Effect of Pb2+ on the growth of Spirulina Platnesis and its physiological characters, J. Lake Sci. (In Chinese) 11 (1999) 135-140.

Google Scholar

[19] A.G. Wang, G.H. Luo, Quntitarive relation between the reaction of hydroxylamine and superoxide anion radicals in plant, Plant Physiol. Commun. (In Chinese) 6 (1990) 55-57.

Google Scholar

[20] C.N. Giannopolitis, S.K. Ries, Superoxide dismutase.Ι. Occurrence in higher plants, Plant Physiol. 59 (1977) 309-314

DOI: 10.1104/pp.59.2.309

Google Scholar

[21] Y.R. Wang, H.X. Liu, P. Li, The effect of chilling stress on membrance-lipid peroxidation of photosynthetic apparatus in rice seedlings in the dark and light, Acta Phytophysiol. Sin. 12 (1986) 244-251.

Google Scholar

[22] C. Beauchamp, I. Fridovich, Superoxide dismutase: improved assay and an assay applicable to acrylamide gels, Anal. Biochem. 44(1971) 276-287.

DOI: 10.1016/0003-2697(71)90370-8

Google Scholar

[23] K.A. Kelly, C.M. Havrilla, T.C. Brady, K.H. Abramo, E.D. Levin, xidative stress in toxicology: established mammalian and emerging piscine model systems, Environ. Health Perspect, 106 (1998 ) 375-384.

DOI: 10.1289/ehp.98106375

Google Scholar

[24] F. Regoli, S.Gorbi, G. Frenzilli, M. Nigro, I. Corsi, S. Focardi, G.W. Winston, Oxidative stress in ecotoxicology: from the analysis of individual antioxidants to a more integrated approach, Mar. Environ. Res. 54 (2002) 419-423.

DOI: 10.1016/s0141-1136(02)00146-0

Google Scholar

[25] M. Choudhary, U. K. Jetley, M. A. Khan, S. Zutshi, T. Fatma, Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5, Ecotoxicol. Environ. Safety, 66 (2007) 204-209.

DOI: 10.1016/j.ecoenv.2006.02.002

Google Scholar

[26] S. Baccouch, A. Chaoui, E. El Ferjani, Nickel toxicity induces oxidative damage in Zea mays roots, J. Plant Nutr. 24 (2001) 1085-1097.

DOI: 10.1081/pln-100103805

Google Scholar

[27] S. Sinha, K. Pandey, Nickel induced toxic effects and bioaccumulation in the submerged plant, Hydrilla verticillata (L.F.) royle under repeated metal exposure, Bull. Environ. Contam. Toxicol. 71 (2003) 1175-1183.

DOI: 10.1007/s00128-003-8896-8

Google Scholar

[28] M.X. Tao, G.R. Wu, J.C. Wei, Evolution of blue- green algae through analyzing their superoxide dismutase isozyme types, J. Nanjing Normal Univ. (Natural Science) (In Chinese) 22 (1999) 93-97.

Google Scholar

[29] D.C. Clare, H.D. Rabinowitch, I. Fridovich, Superoxide dismutase and chilling injury in Chlorella ellipsoidea, Arch. Biochem. Biophysics, 23 (1984) 158-163.

DOI: 10.1016/0003-9861(84)90372-2

Google Scholar