[1]
L. Sanità di Tippi, R. Gabbrielli, Response to cadium in higher plants, Environ. Exp.Bot. 41 (1999) 105-130.
Google Scholar
[2]
H. Clijsters, A. Cuypers, J. Vangronsveld, Physiological responses to heavy metals in higher plants; defense against oxidative stress, Z. Naturforsch. 54c (1999) 730-734.
DOI: 10.1515/znc-1999-9-1018
Google Scholar
[3]
C.H. Foyer, M. Lelandais, K.J. Kunert, Photooxidative stress in plants, Physio. Plant. 72 (1994) 681-689.
Google Scholar
[4]
A. Hegedüs, S. Erdei and G. Horváth, Comparative studies of H2O2 detoxifying enzymes in green and greening barleyseedlings under cadmium stress, Plant Sci. 160 (2001) 1085-1093.
DOI: 10.1016/s0168-9452(01)00330-2
Google Scholar
[5]
O.K. Okamoto, P. Colepicolo, Response of superoxide dismutase to pollutant metal stress in the marine dinoflagellate Gonyaulax polyedra, Comp. Biochem. Physiol. 119 (1998) 67-73.
DOI: 10.1016/s0742-8413(97)00192-8
Google Scholar
[6]
V. Athanasios, V. Thomais, D. Manos, S. Michael, Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants, Ecotoxiol. Environ. safety, 64 (2006) 178-189.
DOI: 10.1016/j.ecoenv.2005.03.013
Google Scholar
[7]
G. Florence, J.B. Maria, Does zinc produce reactive oxygen species in ruditapes decussates? Ecotoxicol. Environ.Safety, 57 (2004) 399-409.
DOI: 10.1016/j.ecoenv.2003.07.002
Google Scholar
[8]
C. Kyung-sil, S. Pauli, P. Marianne, Oxidative stress tolerance in the filamentous green algae Cladophora glomerata and Enteromorpha ahlneriana, J. Exp.Mar. Biol. Ecol. 298 (2004) 111-123.
DOI: 10.1016/j.jembe.2003.08.007
Google Scholar
[9]
Z.X. Wu, N.Q. Gan, Q. Huang, L.R. Song, Response of Microcystis to copper stress----Do phenotypes of Microcystis make a difference in stress tolerance? Environ. Pollut. 147 (2007) 324-330.
DOI: 10.1016/j.envpol.2006.05.022
Google Scholar
[10]
R. Khanna-chopra, S. Sabarinath, Heat-stable chloroplastic Cu/Zn superoxide dismutase in Chenopodium murale, Biochem. Biophys. Res. Commun. 320 (2004) 1187-1192.
DOI: 10.1016/j.bbrc.2004.06.071
Google Scholar
[11]
M. Awasthi, L.C. Raib, Toxicity of nickel, zinc, and cadmium to nitrate uptake in free and immobilized cells of Scenedesmus quadricauda, Ecotoxicol. Environ. Safety, 61 (2005) 268-272.
DOI: 10.1016/j.ecoenv.2004.12.018
Google Scholar
[12]
D. Kaplan Y. M. Heimer, A. Abeliovich and P. B. Goldsbrough, Cadium toxicity and resistance in Chlorella sp., Plant Sci. 109 (1995) 129-137.
DOI: 10.1016/0168-9452(95)04165-q
Google Scholar
[13]
S. Sarita, G. Manisha, C. Prakash, Oxidative stress induced by iron in hytrilla verticillata (l.f.) royle: response of antioxidants, Ecotoxicol. Environ. Safety, 38 (1997) 286-291.
DOI: 10.1006/eesa.1997.1598
Google Scholar
[14]
P. Madoni, The acute toxicity of nickel to freshwater ciliates, Environ. Pollut. 109 (2000) 53-59.
DOI: 10.1016/s0269-7491(99)00226-2
Google Scholar
[15]
R.A. Gomes-Junior, C.A. Moldes, F.S. Delite, P.L. Gratão, P. Mazzafera, P.J. Lea and R.A. Azevedo, ickel elicits a fast antioxidant response in Coffea Arabica cells, Plant Physiol. Biochem. 44 (2006) 420-429.
DOI: 10.1016/j.plaphy.2006.06.002
Google Scholar
[16]
J.K. Dunnick, M.R. Elwell, A.E. Radowsky, Comparative carcinogenic effects of nickel subsulfide, nickel oxide, or nickel hexahydrate chronic exposures in the lung, Cancer Res. 55 (1995) 5251-5256.
Google Scholar
[17]
B. Salem,C. Abdelilah, E.F. Ezzeddine, Nickel-induced oxidative damage and antioxidant responses in Zae mays shoots, Plant hysiol. Biochem. 36 (1998) 689-694.
DOI: 10.1016/s0981-9428(98)80018-1
Google Scholar
[18]
C.F. Zhou, G.R. Wu, C.M. Lu, Effect of Pb2+ on the growth of Spirulina Platnesis and its physiological characters, J. Lake Sci. (In Chinese) 11 (1999) 135-140.
Google Scholar
[19]
A.G. Wang, G.H. Luo, Quntitarive relation between the reaction of hydroxylamine and superoxide anion radicals in plant, Plant Physiol. Commun. (In Chinese) 6 (1990) 55-57.
Google Scholar
[20]
C.N. Giannopolitis, S.K. Ries, Superoxide dismutase.Ι. Occurrence in higher plants, Plant Physiol. 59 (1977) 309-314
DOI: 10.1104/pp.59.2.309
Google Scholar
[21]
Y.R. Wang, H.X. Liu, P. Li, The effect of chilling stress on membrance-lipid peroxidation of photosynthetic apparatus in rice seedlings in the dark and light, Acta Phytophysiol. Sin. 12 (1986) 244-251.
Google Scholar
[22]
C. Beauchamp, I. Fridovich, Superoxide dismutase: improved assay and an assay applicable to acrylamide gels, Anal. Biochem. 44(1971) 276-287.
DOI: 10.1016/0003-2697(71)90370-8
Google Scholar
[23]
K.A. Kelly, C.M. Havrilla, T.C. Brady, K.H. Abramo, E.D. Levin, xidative stress in toxicology: established mammalian and emerging piscine model systems, Environ. Health Perspect, 106 (1998 ) 375-384.
DOI: 10.1289/ehp.98106375
Google Scholar
[24]
F. Regoli, S.Gorbi, G. Frenzilli, M. Nigro, I. Corsi, S. Focardi, G.W. Winston, Oxidative stress in ecotoxicology: from the analysis of individual antioxidants to a more integrated approach, Mar. Environ. Res. 54 (2002) 419-423.
DOI: 10.1016/s0141-1136(02)00146-0
Google Scholar
[25]
M. Choudhary, U. K. Jetley, M. A. Khan, S. Zutshi, T. Fatma, Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the cyanobacterium Spirulina platensis-S5, Ecotoxicol. Environ. Safety, 66 (2007) 204-209.
DOI: 10.1016/j.ecoenv.2006.02.002
Google Scholar
[26]
S. Baccouch, A. Chaoui, E. El Ferjani, Nickel toxicity induces oxidative damage in Zea mays roots, J. Plant Nutr. 24 (2001) 1085-1097.
DOI: 10.1081/pln-100103805
Google Scholar
[27]
S. Sinha, K. Pandey, Nickel induced toxic effects and bioaccumulation in the submerged plant, Hydrilla verticillata (L.F.) royle under repeated metal exposure, Bull. Environ. Contam. Toxicol. 71 (2003) 1175-1183.
DOI: 10.1007/s00128-003-8896-8
Google Scholar
[28]
M.X. Tao, G.R. Wu, J.C. Wei, Evolution of blue- green algae through analyzing their superoxide dismutase isozyme types, J. Nanjing Normal Univ. (Natural Science) (In Chinese) 22 (1999) 93-97.
Google Scholar
[29]
D.C. Clare, H.D. Rabinowitch, I. Fridovich, Superoxide dismutase and chilling injury in Chlorella ellipsoidea, Arch. Biochem. Biophysics, 23 (1984) 158-163.
DOI: 10.1016/0003-9861(84)90372-2
Google Scholar