Microbial Remediation of Atrazine-Contaminated Soil by Rhizobium sp DNS7 and Acinetobacter sp DNS32

Article Preview

Abstract:

The uses of herbicides have become an integral part of modern agricultural systems. The intensive use of herbicides atrazine has resulted in serious environmental problems. We researched the microbial Remediation of Atrazine-contaminated soil by Rhizobium sp. DNS7 and Acinetobacter sp DNS32. The results found two strains had a high capability for degrading atrazine in soil and culture medium. The mixed strains was more efficient in the mineralization of atrazine than the isolated strain in soil. The result provided a effective way to remediate atrazine pollution soil.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 356-360)

Pages:

1327-1330

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Scott, S.E. Lewis, R. Milla, M.C. Taylor, A.J.W. Rodgers, G. Dumsday, J.E. Brodie, G.J. Oakeshott, R.J. Russell: Journal of Environmental Management Vol. 91(2010), p. (2075)

DOI: 10.1016/j.jenvman.2010.05.007

Google Scholar

[2] E. Topp, W. Mulbry, H. Zhu, S. Nour, D. Cuppels: Appl. Environ. Microbiol. Vol. 66 (2000), p.3134

Google Scholar

[3] Y. Zhang, C. Li, R. Wang: The 2nd International Conference on Bioinformatics and Biomedical Engineering (2010)

Google Scholar

[4] C.D.S. Tomlin: In: Tomlin, C.D.S. (Ed.), The Pesticide Manual. BCPB, Aston, UK (2006) p.23

Google Scholar

[5] H. Xing, Y. Han, S. Li, J. Wang, X. Wang, S. Xu: Ecotoxicology and Environmental Safety Vol. 73 (2010) p.1666

Google Scholar

[6] L. Yang, J. Zha, X. Zhang, W. Li, Z. Li, Z. Wang: Aquatic Toxicology Vol. 98(2010) p.381

Google Scholar

[7] Y. Song, L.S. Zhu, J. Wang, J.H. Wang, W. Liu, H. Xie: Soil Biology & Biochemistry Vol. 41 (2009) p.905

Google Scholar

[8] T. Oka, O. Tooi, N. Mitsui, M. Miyahara, Y. Ohnishi, M. Takase, A. Kashiwagi, T. Shinkai, N. Santo, T. Iguchi: Aquatic Toxicology Vol. 87(2008) p.215

DOI: 10.1016/j.aquatox.2008.02.009

Google Scholar

[9] D. Souza, M.L. Newcombe, L.D. Alvey, D.E. Crowley, A. Hay, M.J. Sadowsky, L.P. Wackett: Appl. Environ. Microbiol Vol. 64(1998) p.178

DOI: 10.1128/aem.64.1.178-184.1998

Google Scholar

[10] D. Smith, S. Alvey, D.E. Crowley: FEMS Microbiol. Ecol. Vol. 53(2005) p.265

Google Scholar

[11] N.U. Kolic, D. Hrsak, A.B. Kolar, I. Petric, S. Stipicevic, G. Soulas, F. Martin-Laurent: Int. Biodeterior. Biodegrad. Vol. 60 (2007) p.299

Google Scholar

[12] J. Mahía, A. Martín, T. Carballas, M. Díaz-Raviña: Science of the Total Environment Vol. 378 (2007), p.187

DOI: 10.1016/j.scitotenv.2007.01.036

Google Scholar

[13] S. Siripattanakul, W. Wirojanagud, J. McEvoy, T. Limpiyakorn, E. Khan: Journal of Applied Microbiology, Vol. 106 (2009), p.986

DOI: 10.1111/j.1365-2672.2008.04075.x

Google Scholar

[14] Z. Getenga, U. Dörfler, A. Iwobi, M. Schmid, R. Schroll: Chemosphere Vol. 77 (2009), p.534

Google Scholar

[15] S. Grundmann, R. Fuß, M. Schmid, B. Ruth, R. Schulin, J.C. Munch, R. Schroll: Chemosphere, Vol. 68 (2007) p.511

DOI: 10.1016/j.chemosphere.2006.12.065

Google Scholar