Theoretical Study of the 1CHCl + 3O2 Reaction

Article Preview

Abstract:

Subscript textIn order to clarify the reaction mechanisms of the singlet monochlorocarbene radical (1 CHCl) with 3O2 on the singlet potential energy surface (PES), a detailed theoretical study was carried out at the B3LYP/6-311++G(d,p) level. It is found that the first step is the formation of the planar adducts HClCOO via a barrierless association in the 1 CHCl +3 O2 reaction, and then some isomerizations and breakages of bonds takSuperscript texte place, producing P1 (HCO + ClO), P2 (CO2 + HCl) and P3 (CO + HOCl). The product channel of P2 (CO2 + HCl) is the most competitive one both kinetically and thermodynamically. P1 (HCO + ClO) is the least favorable.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 356-360)

Pages:

20-24

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. J. Merer and D. N. Travis: Can. J. Phys. Vol. 44(1966), p.525

Google Scholar

[2] M. E. Jacox and D. E. Milligan: J. Chem. Phys. Vol. 47(5)(1967), p.1626

Google Scholar

[3] M. Kakimoto, S. Saito and E. Hirota: J. Mol. Spectrosc. Vol. 97(1983), p.194

Google Scholar

[4] Y. W. Qiu, S. K. Zhou and J. L. Shi: Chem. Phys. Lett. Vol. 136(1)(1987), p.93

Google Scholar

[5] B. C. Chang and T. J. Sears: J. Chem. Phys. Vol. 102(1995), p.6347

Google Scholar

[6] B. C. Chang and T. J. Sears: J. Mol. Spectrosc. Vol. 173(1995), p.391

Google Scholar

[7] B. C. Chang, R. Fei and T. J. Sears: J. Mol. Spectrosc. Vol. 183(1997), p.341

Google Scholar

[8] M. E. Jacox: J. Phys. Chem. Ref Data. Vol. 27(2)(1998), p.115

Google Scholar

[9] C. W. Chen, T. C. Tsai and B. C. Chang: Chem. Phys. Lett. Vol. 347(1-3) (2001), p.73

Google Scholar

[10] S. Yamamoto, H. Habara, E. Kim, et al: J. Chem. Phys. Vol. 115(2001), p.6007.

Google Scholar

[11] M. E. Jacox: J. Phys. Chem. Ref Data. Vol. 32(1)(2003), p.1

Google Scholar

[12] C. S. Lin, Y. E. Chen and B. C. Chang: J. Chem. Phys. Vol. 121(2004), p.4164.

Google Scholar

[13] H. Fan, I. Ionescu, C. Annesley, et al: J. Mol. Spectrosc. Vol. 225(1)(2004), p.43

Google Scholar

[14] Z. Wang, R. G. Bird, H. G. Yu, et al: J. Chem. Phys. Vol. 124(2006), p.074314

Google Scholar

[15] C. Tao, C. Mukarakate and S. A. Reid: J. Chem. Phys. Vol. 124(2006), p.224314

Google Scholar

[16] S. G. Lias, Z. Karpas and J. F. Liebman: J. Am. Chem. Soc. Vol. 107(1985), p.6089.

Google Scholar

[17] G. E. Scuseria, M. Duran, R. G. A. R. Maclagan, et al: J. Am. Chem. Soc. Vol. 108 (12)(1986), p.3248

Google Scholar

[18] M. Schwartz and P. Marshall: J. Phys. Chem. A. Vol. 103(1999), p.7900

Google Scholar

[19] J. C. Poutsma, J. A. Paulino and R. R. Squires: J. Phys. Chem. A. Vol. 101 (29)(1997), p.5327

Google Scholar

[20] R. Wagener and H. G. Wagner: Z. Phys. Chem. (Munich). Vol. 175 (1992), p.9

Google Scholar

[21] H. H. Carstensen, C. Rehbein and H. G. Wagner: Ber. Bunsenges. Phys. Chem. Vol. 101(1997), p.1429

Google Scholar

[22] R. E. Baren, M. A. Erickson and J. F. Hershberger: Int. J. Chem. Kinet. Vol. 34(2002), p.12

Google Scholar

[23] J. J. Liu, J. K. Feng, H. Chen, et al: J. Phys. Chem. A. Vol. 106 (35)(2002), p.8156

Google Scholar

[24] J. J. Liu, Y. H. Ding, Y. G. Tao, et al: J. Comput. Chem. Vol. 23(2002), p.625

Google Scholar

[25] J. X. Zhang, J. Y. Liu, Z. S. Li, et al: J. Comput. Chem. Vol. 25(2004), p.1184

Google Scholar

[26] M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al: Gaussian 03. Revision B.05, Gaussian, Inc., Pittsburgh, PA, 2003.

Google Scholar

[27] Information on http://webbook.nist.gov

Google Scholar