Microwave Synthesis of Nanosilver Colloidal Suspension for Anti-Bacterial Coating

Article Preview

Abstract:

This article reports a microwave-assisted route to synthesize nanosilver colloidal suspension and to deposit silver nanoparticles onto activated carbon fabrics (ACFs). The properties of the nanosilver suspension are characterized in terms of bacterial inactivation and growth inhibition. The metallic Ag nanocrystals with narrow size distribution are uniformly dispersed onto ACFs under the microwave irradiation of 1 min. Microwave irradiation is capable of heating up the reaction solution homogeneously, inducing uniform nucleation and rapid crystal growth to form the Ag crystallites. This work aims to elucidate how as-grown Ag nanoparticles affect the inactivation of Escherchia coli (E. coli) and how Ag-ACF surface inhibits the bacterial growth. The Ag colloidal suspension offers superior anti-bacterial ability against E. coli cells at a low concentration of 20 mg/L. Thus, the study has established a simple, efficient and effective process in the synthesis of both Ag colloidal suspension and Ag-ACF composite.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 356-360)

Pages:

277-282

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Ortiz-Ibarra, N. Casillas, V. Soto, M. Barcena-Soto, R.Torres-Vitela, W.D.L. Cruz, S. Gómrz-Salazar, J. Colloid Interface Sci. 314 (2007) 562.

DOI: 10.1016/j.jcis.2007.05.062

Google Scholar

[2] A. Dror-Ehre, H. Mamane, T. Belenkova, G. Markovich, A. Adin, J. Colloid Interface Sci. 339 (2009) 521.

DOI: 10.1016/j.jcis.2009.07.052

Google Scholar

[3] H. Miyoshi, H. Ohno, K. Sakai, N. Okamura, H. Kourai, J. Colloid Interface Sci. 345 (2010) 433.

Google Scholar

[4] A. Panáček, L. Kvítek, R. Prucek, M. Kolář, R. Večeřová, N. Pizúrová, V.K. Sharma, T. Nevěčná, R. Zbořil, J. Phys. Chem. B 110 (2006) 16248.

DOI: 10.1021/jp063826h

Google Scholar

[5] J. Guo, A. Hsu, D. Chu, R. Chen, J. Phys. Chem. C 114 (2010) 4324.

Google Scholar

[6] B. He, J.J. Tan, K.Y. Liew, H. Liu, J. Mol. Catal. A: Chem. 221 (2004) 121.

Google Scholar

[7] C. Tan, F. Wang, J.J. Liu, Y.B. Zhao, J.J. Wang, L.H. Zhang, K.C. Park, M. Endo, Mater. Lett. 63 (2009) 969.

Google Scholar

[8] L. Demarconnay, C. Coutanceau, J.M. Léger, Electrochim. Acta 49 (2004) 4513.

Google Scholar

[9] A. Pertica, S. Gavrilliu, M. Lungu, N. Buruntea, C. Panzaru, Mater. Sci. Eng. B 152 (2008) 22.

Google Scholar

[10] Y.-W. Chih, W.-T. Cheng, Mater. Sci. Eng. B 148 (2007) 67.

Google Scholar

[11] C.S. Li, B.S. Wang, Y.J. Qiao, W.Z. Lu, J. Liang, Int. J. Miner. Metall. Mater. 16 (2009) 598.

Google Scholar

[12] M.A. Kostowskyj, D.W. Kirk, S.J. Thorpe, Int. J. Hydrogen Energy 35 (2010) 5666.

Google Scholar

[13] T. Liu, H.Q. Tang, X.M. Cai, J. Zhao, D.J. Li, R. Li, X.L. Sun, Nucl. Instrum. Methods Phys. Res. B 264 (2007) 282.

Google Scholar

[14] C.T. Hsieh, W.M. Hung, W.Y. Chen, Int. J. Hydrogen Energy 35 (2010) 8425.

Google Scholar

[15] S. Shrivastava, T. Bera, A. Roy, G. Singh, P. Ramachandrarao, D. Dash, Nanotechnology 18 (2007) 225103.

DOI: 10.1088/0957-4484/18/22/225103

Google Scholar

[16] J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramírez and M.J. Yucaman, Nanotechnology 16 (2005) 2346.

DOI: 10.1088/0957-4484/16/10/059

Google Scholar

[17] J.A. Creighton and D.G. Eadon, J. Chem. Soc., Faraday Trans. 87 (1991) 3881.

Google Scholar

[18] U. Kreibig, C.V. Fragstein, Z. Phys. 224 (1969) 307.

Google Scholar

[19] H. Yin, T. Yamamoto, Y. Wada, S. Yanagida, Mater. Chem. Phys. 83 (2004) 66.

Google Scholar

[20] X.H.N. Xu, W.J. Brownlow, S.V. Kyriacou, Q. Wan, J. Viola, Biochemistry 43 (2004) 10400. Fig. 1. Absorption spectrum of Ag colloidal suspension in distilled water. The Ag concentration was set at 1.5 g/L. The inset shows the photograph of as-grown Ag suspension. Fig. 2. Typical XRD patterns of (a) fresh ACF and (b) Ag-ACF samples. The intensities of Ag-ACF sample were magnified by twenty. Fig. 3. (a) Photograph of Ag-ACF sample, and FE-SEM images of Ag-ACF sample with (b) low and (c) high magnifications. The inset shows HR-TEM image of as-grown silver nanoparticles. Fig. 4. Photographs of the E. coli growth after 24 hr (a) without and (b) with Ag colloidal suspension at Ag concentration of 20 mg/L. Fig. 5. Photograph of the E. coli growth on Ag-ACF surface after 24 hr, showing an obvious inhibition zone without any the bacterial survival.

DOI: 10.1016/s0008-6223(99)90001-5

Google Scholar