[1]
H. Ortiz-Ibarra, N. Casillas, V. Soto, M. Barcena-Soto, R.Torres-Vitela, W.D.L. Cruz, S. Gómrz-Salazar, J. Colloid Interface Sci. 314 (2007) 562.
DOI: 10.1016/j.jcis.2007.05.062
Google Scholar
[2]
A. Dror-Ehre, H. Mamane, T. Belenkova, G. Markovich, A. Adin, J. Colloid Interface Sci. 339 (2009) 521.
DOI: 10.1016/j.jcis.2009.07.052
Google Scholar
[3]
H. Miyoshi, H. Ohno, K. Sakai, N. Okamura, H. Kourai, J. Colloid Interface Sci. 345 (2010) 433.
Google Scholar
[4]
A. Panáček, L. Kvítek, R. Prucek, M. Kolář, R. Večeřová, N. Pizúrová, V.K. Sharma, T. Nevěčná, R. Zbořil, J. Phys. Chem. B 110 (2006) 16248.
DOI: 10.1021/jp063826h
Google Scholar
[5]
J. Guo, A. Hsu, D. Chu, R. Chen, J. Phys. Chem. C 114 (2010) 4324.
Google Scholar
[6]
B. He, J.J. Tan, K.Y. Liew, H. Liu, J. Mol. Catal. A: Chem. 221 (2004) 121.
Google Scholar
[7]
C. Tan, F. Wang, J.J. Liu, Y.B. Zhao, J.J. Wang, L.H. Zhang, K.C. Park, M. Endo, Mater. Lett. 63 (2009) 969.
Google Scholar
[8]
L. Demarconnay, C. Coutanceau, J.M. Léger, Electrochim. Acta 49 (2004) 4513.
Google Scholar
[9]
A. Pertica, S. Gavrilliu, M. Lungu, N. Buruntea, C. Panzaru, Mater. Sci. Eng. B 152 (2008) 22.
Google Scholar
[10]
Y.-W. Chih, W.-T. Cheng, Mater. Sci. Eng. B 148 (2007) 67.
Google Scholar
[11]
C.S. Li, B.S. Wang, Y.J. Qiao, W.Z. Lu, J. Liang, Int. J. Miner. Metall. Mater. 16 (2009) 598.
Google Scholar
[12]
M.A. Kostowskyj, D.W. Kirk, S.J. Thorpe, Int. J. Hydrogen Energy 35 (2010) 5666.
Google Scholar
[13]
T. Liu, H.Q. Tang, X.M. Cai, J. Zhao, D.J. Li, R. Li, X.L. Sun, Nucl. Instrum. Methods Phys. Res. B 264 (2007) 282.
Google Scholar
[14]
C.T. Hsieh, W.M. Hung, W.Y. Chen, Int. J. Hydrogen Energy 35 (2010) 8425.
Google Scholar
[15]
S. Shrivastava, T. Bera, A. Roy, G. Singh, P. Ramachandrarao, D. Dash, Nanotechnology 18 (2007) 225103.
DOI: 10.1088/0957-4484/18/22/225103
Google Scholar
[16]
J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramírez and M.J. Yucaman, Nanotechnology 16 (2005) 2346.
DOI: 10.1088/0957-4484/16/10/059
Google Scholar
[17]
J.A. Creighton and D.G. Eadon, J. Chem. Soc., Faraday Trans. 87 (1991) 3881.
Google Scholar
[18]
U. Kreibig, C.V. Fragstein, Z. Phys. 224 (1969) 307.
Google Scholar
[19]
H. Yin, T. Yamamoto, Y. Wada, S. Yanagida, Mater. Chem. Phys. 83 (2004) 66.
Google Scholar
[20]
X.H.N. Xu, W.J. Brownlow, S.V. Kyriacou, Q. Wan, J. Viola, Biochemistry 43 (2004) 10400. Fig. 1. Absorption spectrum of Ag colloidal suspension in distilled water. The Ag concentration was set at 1.5 g/L. The inset shows the photograph of as-grown Ag suspension. Fig. 2. Typical XRD patterns of (a) fresh ACF and (b) Ag-ACF samples. The intensities of Ag-ACF sample were magnified by twenty. Fig. 3. (a) Photograph of Ag-ACF sample, and FE-SEM images of Ag-ACF sample with (b) low and (c) high magnifications. The inset shows HR-TEM image of as-grown silver nanoparticles. Fig. 4. Photographs of the E. coli growth after 24 hr (a) without and (b) with Ag colloidal suspension at Ag concentration of 20 mg/L. Fig. 5. Photograph of the E. coli growth on Ag-ACF surface after 24 hr, showing an obvious inhibition zone without any the bacterial survival.
DOI: 10.1016/s0008-6223(99)90001-5
Google Scholar