Kinetic Studies for the Inhibition Effect of Pentachlorophenol on Alkaline Phosphatase Activity In Vitro

Article Preview

Abstract:

The inhibition kinetic parameters of pentachlorophenol (PCP) on bovine intestinal mucosa alkaline phosphatase (ALP) activity were studied by spectrophotometry. The results showed that PCP inhibited ALP activity in a concentration dependent manner, and the 50% inhibitory concentration (IC50) was estimated to be 4.20 mM. The apparent Michaelis–Menten constant (Km) and apparent maximum reaction rate (Vmax) was found to be decreased in the presence of PCP. Lineweaver–Burk plots indicated that the nature of the inhibition was of an uncompetitive type. Kinetic analysis indicated that the value of the inhibition constant (Ki) was 5.67 mM.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 356-360)

Pages:

309-312

Citation:

Online since:

October 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Czaplicka: Sci. Total. Environ. Vol. 322 (2004), p.21

Google Scholar

[2] Y.L. Dong, P.J. Zhou, S.Y. Jiang, X.W. Pan and X.H. Zhao: Comp. Biochem. Phys. C Vol. 150 (2009), p.179

Google Scholar

[3] J. Michałowicz and I. Majsterek: Toxicology Vol. 8 (2010), p.171

Google Scholar

[4] A. Miyazaki, T. Amano, H. Saito and Y. Nakano: Chemosphere Vol. 47 (2002), p.65

Google Scholar

[5] M. Czaplicka: J. Hazard. Mater. B Vol. 134 (2006) 45-59.

Google Scholar

[6] Z. Duan, L. Zhu, K. Yao and X. Zhu: Ecotox. Environ. Safe. Vol. 71 (2008), p.774

Google Scholar

[7] E. Puglisi, P. Vernile, G. Bari, M. Spagnuolo, M. Trevisan, E. Lillo and P. Ruggiero: Chemosphere Vol. 77 (2009), p.80.

DOI: 10.1016/j.chemosphere.2009.05.022

Google Scholar

[8] R.B. McComb, G.N. Bower and S. Posen: Alkaline Phosphatase, Plenum Press, New York (1979).

Google Scholar

[9] M.J. Weiss, D.E. Cole, K. Ray, M.P. Whyte, M.A. Lafferty, R.A. Mulivor and H. Harris: Prog. Nat. Acad. Sci. USA Vol. 85 (1988), p.7666

Google Scholar

[10] J.E. Coleman: Annu. Rev. Bioph. Biom. Vol. 21(1992), p.441

Google Scholar

[11] J.E. Murphy and E.R. Kantrowitz: Mol. Microbiol. Vol. 12 (1994), p.351

Google Scholar

[12] J.G. Zalatan, T.D. Fenn and D. Herschlag: J. Mol. Biol. Vol. 384(2008), p.1174

Google Scholar

[13] N.K. Ghosh and W.H. Fishman: J. Biol. Chem. Vol. 241 (1966), p.2516

Google Scholar

[14] M.F. Hoylaerts, T. Manes and J.L. Millan: Biochem. J. Vol. 286 (1992), p.23

Google Scholar

[15] V. Meštrović and M. Pavela-Vrančić: Biochimie Vol. 85 (2003), p.647

Google Scholar

[16] A.S. Alhomida, A.A. Al-Rajhi, M.A. Kamal and A.A. Al-Jafari: Toxicology, Vol. 147 (2000), p.33

Google Scholar

[17] H. Lineweaver and D. Burk: J. Am. Chem. Soc. Vol. 56(1934), p.658

Google Scholar

[18] D.W. Moss and E.J. King: Biochem. J. Vol. 84(1962), p.192

Google Scholar

[19] T. Komoda, S. Hokarl, M. Sonoda, V. Sakagishi and T. Tamura: Clin. Chem. Vol. 28 (1982), p.2426

Google Scholar

[20] A. Cornish-Bowden: Fed. Eur. Biochem. Soc. Vol. 203(1986), p.3

Google Scholar

[21] C.A.N. Trotman and C. Greenwood: Biochem. J. Vol. 124 (1971), p.25

Google Scholar