Synthesis of CuO and ZnO Nanoparticles and CuO Doped ZnO Nanophotocatalysts

Article Preview

Abstract:

Nanocrystalline copper oxide (CuO) particles were precipitated by using different sources of copper salts and oxalic acids. The transformation to monoclinic CuO is achieved by heating the copper precipitate at 300°C for 4 h. Dice-like and flower-like structures were obtained from the effects of by-product’s acidity to the morphology of copper oxalate (Cu (C2O4)). The particle sizes of all samples, determined by transmission electron microscopy (TEM), were in the range of 10-30 nm. 0.5% CuO doped ZnO (CuO-ZnO) nanophotocatalysts were successfully prepared by mixing synthesized CuO nanoparticles with synthesized ZnO in absolute methanol. No significant changes in morphology were observed between the undoped and doped ZnO except for a higher surface area obtained for CuO doped ZnO. The doping of CuO on ZnO also resulted in enhanced photocatalytic performance of ZnO in the photodegradation of methyl orange dye.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

402-407

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Teng, F., Yao, W., Zheng, Y., Ma, Y., Teng, Y., Xu, T., Liang, S., Zhu,Y.: Sensors and Actuators B. 2008, 134, 761.

Google Scholar

[2] Hong, J., Li, J., Ni, Y.: J. Alloys Compd. 2009, 481, 610.

Google Scholar

[3] Jia, W., Reitz, E., Sun, H., Zhang, H., Lei, Y.: Mater. Lett. 2009, 63, 519.

Google Scholar

[4] Xu, C., Liu, Y., Xu, G., Wang, G.: M. Res. Bull. 2002, 37, 2365.

Google Scholar

[5] Erdogan, I. Y., Gullu, O.: J. Alloys Compd. 2010, 429, 378.

Google Scholar

[6] Chen, J. T., Zhang, F., Wang, J., Zhang, G. A., Miao, B. B., Fan, X. Y., Yan, D., Yan,P. X.: J. Alloys Compd. 2008, 454, 268.

Google Scholar

[7] Yu, L., Zhang, G., Wu, Y., Bai, X., Guo, D.: J. Cryst. Growth 2008, 310 , 3125.

Google Scholar

[8] Dierstein, A., Natter, H., Meyer, F., Stephan, H. -O., Kropf, C., Hempelmann, R.: Scripta Mater. 2001, 44, 2209.

DOI: 10.1016/s1359-6462(01)00906-x

Google Scholar

[9] Zhu, J., Bi, H., Wang, Y., Wang, X., Yang, X., Lu, L.: Mater. Lett. 2007, 61, 5236.

Google Scholar

[10] Su, Y. -K., Shen, C. -M., Yang, H. -T., Li, H. -L., Gao, H. -J.: Trans. Nonferrous Met. Soc. China 2007, 17, 783.

Google Scholar

[11] Tang, X.L., Ren, L., Sun, L.N., Tian, W. G., Cao, M. H., Hu, C. W.: Chem. Res. Chin. Univ. 2006, 22, 551.

Google Scholar

[12] Song, X., Yu, H., Sun, S.L.: J. Col. Inter. Sci. 2005, 289, 591.

Google Scholar

[13] Han, D., Yang, H., Zhu, C., Wang, F.: Powder Techno. 2008, 185, 286.

Google Scholar

[14] Keyson, D., Volanti, D. P., Cavalcante, L. S., Simões, A. Z., Varela, J. A., Longo, E.: Mater. Res. Bull. 2008, 43, 775.

Google Scholar

[15] Xu, X., Zhang, M., Feng, J., Zhang, M.: Mater. Lett. 2008, 62, 2790.

Google Scholar

[16] Melghit, K., Wen, L.S.: Ceramics Inter. 2005, 31, 223.

Google Scholar

[17] Gaya, U. I., Abdullah, A. H., Zainal, Z., Hussein, M. Z.: J. Hazard. Mater. 2009, 168, 57.

Google Scholar

[18] Hindeleh, A. M. and Johnson, D. J.: Polymer. 1978, 19, 27.

Google Scholar

[19] Jung, K. Y., Lee, C. H., Kang, Y. C.; Mater. Lett. 2005, 59, 2456.

Google Scholar

[20] Alfonzo, M., Goldwasser, J., Lopez, C. M., Machado, F. J., Matjushin, M., Mendez, B., de Agudelo, M. M. R.: J. Molec. Cat. A: Chem. 1995, 98, 35.

Google Scholar

[21] Conley, R. F. and Althoff, A. C.: J. Col. Inter. Sci. 1971, 37, 186.

Google Scholar

[22] Atkins P. and de Paula, J.: Physical Chemistry 8th ed.; Oxford University Press: New York; (2006).

Google Scholar

[23] Kanade, K. G., Kale, B. B., Baeg, J. O., Lee, S. M., Lee, C. W., Moon, S. J., Chang, H.: Mater. Chem. Phys. 2007, 102, 98.

Google Scholar