Effect of Annealing Temperatures on Nanostructure of NBT Ceramics Prepared via Sol Gel Method

Article Preview

Abstract:

The effects of annealing temperatures on nanostructure of Na0.5Bi0.5TiO3 (NBT) ceramics prepared by sol gel method were investigated. Sol of NBT were synthesized using raw materials namely NaCH3COO, C6H9BiO6 and Ti (C4H9)4, while 2-methoxyethanol and glacial acetic acid were used as solvents. The sol of NBT was dried at 100°C for 24 hours, ground and subsequently annealed at three different temperatures namely 500°C, 600°C and 700°C for 2 hours. Microstructure and morphology of the ceramics were examined using XRD and SEM respectively. XRD revealed that the sample annealed at 500°C contains transient pyrocholore phase while materials annealed at higher temperatures has NBT as primary crystalline phase. The crystallite size dramatically increased from 10 nm to 80 nm with the rise of annealing temperatures. SEM micrographs confirmed the presence of irregular NBT nanoparticles with sizes of 50.0 nm and 80.0 nm for samples annealed at 600°C and 700°C respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

412-416

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Haccart, E. Cattan, & Remiens: Semiconductor Physics, Quantum Electronics & Optoelectronics. Vol. 5 (2002), pp.78-88.

Google Scholar

[2] F. Remondiere, B. B. Malic, M. Kosec, & J. P. Mercurio: Journal of the European Ceramic Society. Vol. 27 (2007), p.4363–4366.

Google Scholar

[3] T. Takenaka, and H. Nagata: Journal of the European Ceramic Society. Vol. 25(2005), pp.2693-2700.

Google Scholar

[4] X. Yi, , H. Chen, , W. C. Zhao, M. Yang, D. Ma, G. C. Yang, & H. Han: Journal of Crystal Growth. Vol. 281 (2005), pp.364-369.

Google Scholar

[5] Y. Li, W. Chen, Q. Xu, J. Zhou, X. Gu, & S. Fang: Journal Material Chemistry and Physics. Vol. 94 (2005), pp.328-332.

Google Scholar

[6] W. Ge, H. Liu, X. Zhao, W. Zhong, X. Pan, T. He, D. Lin, H. Xu, X. Jiang, & L. Luo: Journal of Alloy and Compounds. Vol. 462 (2008), pp.256-261.

Google Scholar

[7] X. Yi, , H. Chen, , W. C. Zhao, M. Yang, D. Ma, G. C. Yang, & H. Han: Journal of Crystal Growth. Vol. 281(2005), pp.364-369.

Google Scholar

[8] Y. Qu, D. Shan, J. Song: Journal of Materials Science and Engineering B. Vol. 121(2005), p.148–151.

Google Scholar

[9] M. H. H. Jumali, M. R. M. Said, N. Y. Wee, M. Yahaya, M. M. Salleh: Sains Malaysiana. Vol. 39(4) (2010), pp.621-626.

Google Scholar

[10] C. H. Yang, Z. Wang, Q. X. Li, J. H. Wang, Y. G. Yang, S. L. Gu, D. M. Yan, J. R. Han: Journal of Crystal Growth. Vol. 284 (2005), p.136–141.

Google Scholar

[11] F. Remondiere, B. B. Malic, M. Kosec & J. P. Mercurio: Journal of the European Ceramic Society. Vol. 27 (2007), p.4363–4366.

Google Scholar

[12] S. H. Lee, C. B. Yoon, S. M. Lee, H. E. Kim: Journal of Materials Research. Vol. 23, No. 1 (2008), pp.115-120.

Google Scholar

[13] T. Takenaka, K. Maruyama, K. Sakata: Journal Applied Physics. Vol. 30 (1991), pp.2236-2240.

Google Scholar

[14] F. Remondiere, B. B. Malic, M. Kosec & J. P. Mercurio: Journal Sol- Gel Science Technology. Vol. 46 (2008), p.117–125.

Google Scholar

[15] J. Hao, X. Wang, R. Chen, L. Li: Materials Chemistry and Physics. Vol. 90 (2005), pp.282-285.

Google Scholar

[16] X. Jing, Y. Li, Q. Yin: Materials Science and Engineering. Vol. B99 (2003), pp.506-510.

Google Scholar

[17] Q. Xu, S. Chen, W. Chen, S. Wu, J. Zhou, H. Sun, Y. Li: Materials Chemistry and physics. Vol. 90 (2005), pp.111-115.

Google Scholar

[18] I. Radosavljevic, J. S. O. Evans, A. W. Sleight: Journal Solid State Chemistry. Vol. 136(1) (1998), pp.63-69.

Google Scholar