Characterization of ZnS Nanoparticles Using MPA as Capping Agents

Article Preview

Abstract:

In this study, the synthesis and characterization of ZnS nanoparticles in aqueous solution precipitation using MPA as capping agents were reported. The 3-mercaptopropionic acid (MPA) was used as the capping agent to control the size of the ZnS nanoparticles. We found that the particles size of ZnS using MPA as capping agent was less than 10nm; ranging from 6-8 nm in size and sphere in shape using TEM measurements. Meanwhile, the photoluminescence and optical absorption were collected using Spectrofluorometer. As the results, the emission band for photoluminescence spectra was blue (~ 425 nm) appeared for samples before refluxed. For samples which were refluxed for 7 hours, the photoluminescence consists of a peak at 385 nm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

434-438

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. B. Cruz, Q. Shen, T. Toyota: Mater Sci Eng C, 25, (2005), 761.

Google Scholar

[2] X. G. Peng, L. Manna, W. D Yang, J. Wickham, E. Scher, A. Kadavanich, A. P. Alivisatos: Nature , 404, (2000), 59-61.

DOI: 10.1038/35003535

Google Scholar

[3] J. R. Heath. Ed: Acc. Chem. Res., 32 (1999), special issue on nanostructures.

Google Scholar

[4] A. P. Alivisatos: Science , 271, (1996), 933-937.

Google Scholar

[5] L. E. Brus. : J. Chem. Phys., 90, (1986), 2555.

Google Scholar

[6] T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, M. A. Elsayed: Science, 272, (1996), 1924-(1926).

Google Scholar

[7] D. Mitra, I. Chakraborty, S. P. Moulik: Colloid. J., 67, (2005), 494.

Google Scholar

[8] J. H. Yao, K. R. Elder, H. Guo, M. Grant: Phys. Rev. B, 47, (1993), 14110.

Google Scholar

[9] H. C. Warad, S. C. Gosh, B. Hemtanon, C. Thanochayonot, J. Dutta.: Sci. Tech. Adv. Mater., 6, (2005), 296.

Google Scholar

[10] M. K. Naskar, A. Patra, M. Chattrerjee. J. Colloid: Interface. Sci., 297, (2006), 271.

Google Scholar

[11] T. Trindade, P. O'Brien.: Chem. Mater., 9, (1997), 523.

Google Scholar

[12] G. Ghosh, M.K. Naskar, A. Patra, M. Chatterjee: Opt. Mater. (2005).

Google Scholar

[13] X. Zhang, H. Song, L. Yu, T. Wang, X. Ren, X. Kong, Y. Xie, and X. Wang.: J. Lumin., 118, (2006), 251.

Google Scholar

[14] S. A. Rosli, Z. A. Zubir, N. M. A. Aziz: Proceedings in Int. Conf. of Funct. Mate. and Devices (ICFMD), (2010), in press.

Google Scholar

[15] S. Kar, S. Chaudhari: J. Phys. Chem. B, (2005), 109, 3298.

Google Scholar

[16] W. G. Becker, A. J. Bard: Phys. Chem., 87, (1993), 4888.

Google Scholar

[17] S. Wageh, Z. S. Ling, X. X. Rong: J. Crystal Growth, 255, (2003), 332-337.

Google Scholar

[18] D. R. Jung, J. Kim, B. Park: Applied Physics Letter, (2010), 21.

Google Scholar

[19] M. Ahmad, K. Rasool, Z. Imran, M. A. Rafiq, M. M. Hassan: Electronics, Communications and Photonics Conf. of Saudi International (SIECPC), (2011), 1-4.

DOI: 10.1109/siecpc.2011.5876907

Google Scholar