Effect of MgO Nano Particle on Mechanical Property and Microstructure of ZTA Ceramic Composite

Article Preview

Abstract:

The mechanical properties and microstructure of zirconia-toughened-alumina ceramic composite doped with nanoparticle of MgO is investigated. The nanoMgO weight percent was varied from 0.3 wt % to 1.3 wt %. Each batch of composition was mixed using ultrasonic cleaner and mechanical stirrer, uniaxially pressed and sintered at 1600 °C for 4 h in pressureless conditions. Analysis of bulk density, Vickers hardness and microstructural observation has been carried out. Results of Vickers hardness increased linearly with addition of more nanoMgO until a certain composition. Maximum Vickers hardness obtained was 1740HV with 1.1 wt % MgO. Furthermore, microstructural observations show that the Al2O3 grain size depends on the particle size of MgO, and is directly related to its hardness property.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

450-454

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Rittidech, L. Portia and T. Bongkarn: Materials Science and Engineering A 438-440 (2006), 395-398.

DOI: 10.1016/j.msea.2006.02.176

Google Scholar

[2] Y. Ji and J. A. Yeomans: Journal of the European Ceramic Society 22 (2002), no. 12, 1927-(1936).

Google Scholar

[3] C. T. Fu, J. M. Wu and A. K. Li: Journal of Materials Science 29 (1994), no. 10, 2671-2677.

Google Scholar

[4] Y. Zeng and D. Jiang: Ceramics International 27 (2001), no. 5, 597-602.

Google Scholar

[5] K. Matsunaga, A. Nakamura, T. Yamamoto and Y. Ikuhara: Solid State Ionics 172 (2004), no. 1-4, 155-158.

DOI: 10.1016/j.ssi.2004.01.044

Google Scholar

[6] H. Sarraf, R. Herbig and M. Maryska: Scripta Materialia 59 (2008), no. 2, 155-158.

Google Scholar

[7] W. H. Tuan, R. Z. Chen, T. C. Wang, C. H. Cheng and P. S. Kuo: Journal of the European Ceramic Society 22 (2002), no. 16, 2827-2833.

Google Scholar

[8] B. Smuk, M. Szutkowska and J. Walter: Journal of Materials Processing Technology 133 (2003), no. 1-2, 195-198.

Google Scholar

[9] R. L. Coble: Journal of Applied Physics 32 (1961), no. 5, 7.

Google Scholar

[10] G. Patermarakis: Applied Catalysis A General 252 (2003), no. 2, 231-241.

Google Scholar

[11] L. Shuzhi, Z. Bangwei, S. Xiaolin, O. Yifang, X. Haowen and X. Zhongyu: Journal of Materials Processing Technology 89-90 (1999), 405-409.

DOI: 10.1016/s0924-0136(99)00048-5

Google Scholar

[12] M. Kumar, F. Aberuagba, J. K. Gupta, K. S. Rawat, L. D. Sharma and G. Murali Dhar: Journal of Molecular Catalysis A: Chemical 213 (2004), no. 2, 217-223.

DOI: 10.1016/j.molcata.2003.12.005

Google Scholar

[13] V. A. Skuratov, S. J. Zinkle, A. E. Efimov and K. Havancsak: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 203 (2003), 136-140.

DOI: 10.1016/s0168-583x(02)02197-3

Google Scholar

[14] R. N. Lumley and G. B. Schaffer: Scripta Materialia 39 (1998), no. 8, 1089-1094.

Google Scholar

[15] A. Z. A. Azhar, H. Mohamed, M. M. Ratnam and Z. A. Ahmad: Journal of Alloy and Compunds 497 (2010), 316-320.

Google Scholar

[16] A. Z. A. Azhar, M. M. Ratnam and Z. A. Ahmad: Journal of Alloys and Compounds 478 (2009), no. 1-2, 608-614.

Google Scholar

[17] K. Tajima, H. J. Hwang, M. Sando and K. Niihara: Journal of the European Ceramic Society 19 (1999), no. 6-7, 1179-1182.

DOI: 10.1016/s0955-2219(98)00399-9

Google Scholar