[1]
D.C. Sinclair, T.B. Adams, F.D. Morrison and A.R. West: CaCu3Ti4O12: One-step in-internal barrier layer capacitor, Applied Physics Letters, 80 (2002) 2153.
DOI: 10.1063/1.1463211
Google Scholar
[2]
M.J. Pan and B.A. Bender: A bimodal grain size model for predicting the dielectric constant of calcium copper titanate ceramics, Journal of the American Ceramic Society, 88 (2005) 2611-2614.
DOI: 10.1111/j.1551-2916.2005.00455.x
Google Scholar
[3]
T.T. Fang and H.K. Shiau: Mechanism for developing the boundary barrier layers of CaCu3Ti4O12, Journal of the American Ceramic Society, 87 (2004) 2072-(2079).
DOI: 10.1111/j.1151-2916.2004.tb06362.x
Google Scholar
[4]
W. Li, R.W. Schwartz, A. Chen and J. Zhu: Dielectric response of Sr doped CaCu3Ti4O12 ceramics, Applied Physics Letters, 90 (2007) 112901-112901-112903.
DOI: 10.1063/1.2713167
Google Scholar
[5]
T. -T. Fang and C.P. Liu: Evidence of the Internal Domains for Inducing the Anomalously High Dielectric Constant of CaCu3Ti4O12, Chemistry of Materials, 17 (2005) 5167-5171.
DOI: 10.1021/cm051180k
Google Scholar
[6]
J.J. Mohamed, S.D. Hutagalung, M.F. Ain, K. Deraman and Z.A. Ahmad: Microstructure and dielectric properties of CaCu3Ti4O12 ceramic, Materials Letters, 61 (2007) 1835-1838.
DOI: 10.1016/j.matlet.2006.07.192
Google Scholar
[7]
M.A. Sulaiman, S.D. Hutagalung, M.F. Ain and Z.A. Ahmad: Dielectric properties of Nb-doped CaCu3Ti4O12 electroceramics measured at high frequencies, Journal of Alloys and Compounds, 493 (2010) 486-492.
DOI: 10.1016/j.jallcom.2009.12.137
Google Scholar
[8]
C. Homes, T. Vogt, S. Shapiro, S. Wakimoto, M. Subramanian and A. Ramirez: Charge transfer in the high dielectric constant materials CaCu3Ti4O12 and CdCu3Ti4O12, Physical Review B, 67 (2003) 92106.
Google Scholar
[9]
M.A. Sulaiman, S.D. Hutagalung, J.J. Mohamed, Z.A. Ahmad, M.F. Ain and B. Ismail: High frequency response to the impedance complex properties of Nb-doped CaCu3Ti4O12 electroceramics, Journal of Alloys and Compounds, 509 (2011) 5701-5707.
DOI: 10.1016/j.jallcom.2011.02.145
Google Scholar
[10]
C.H. Mu, P. Liu, Y. He, J.P. Zhou and H.W. Zhang: An effective method to decrease dielectric loss of CaCu3Ti4O12 ceramics, Journal of Alloys and Compounds, 471 (2009) 137-141.
DOI: 10.1016/j.jallcom.2008.04.040
Google Scholar
[11]
Y. He, H. Zhang, P. Liu, J. Zhou and C. Mu: Oxygen-defects-related dielectric response in CaCu3Ti4O12 ceramics, Physica B: Condensed Matter, 404 (2009) 3722-3726.
DOI: 10.1016/j.physb.2009.06.119
Google Scholar
[12]
P. Liu, Y. He, J.P. Zhou, C.H. Mu and H.W. Zhang: Dielectric relaxation and giant dielectric constant of Nb-doped CaCu3Ti4O12 ceramics under dc bias voltage, Physica Status Solidi (A) Applications and Materials, 206 (2009) 562-566.
DOI: 10.1002/pssa.200824277
Google Scholar
[13]
S.H. Hong, D.Y. Kim, H.M. Park and Y.M. Kim: Electric and Dielectric Properties of Nb Doped CaCu3Ti4O12 Ceramics, Journal of the American Ceramic Society, 90 (2007) 2118-2121.
DOI: 10.1111/j.1551-2916.2007.01709.x
Google Scholar
[14]
V. Brize, G. Gruener, J. Wolfman, K. Fatyeyeva, M. Tabellout, M. Gervais and F. Gervais: Grain size effects on the dielectric constant of CaCu3Ti4O12 ceramics, Materials Science and Engineering: B, 129 (2006) 135-138.
DOI: 10.1016/j.mseb.2006.01.004
Google Scholar