Characterization and PL Properties of Ge-Induced Crystallization of a-Si Films Deposited by Magnetron Sputtering

Article Preview

Abstract:

In this paper, we present the characterization of Ge-induced crystallization of amorphous Si (a-Si) films deposited by magnetron sputtering. The film structures of a-Si films were characterized by Raman spectroscopy, Atomic Force microscope (AFM), and field emission scanning electron microscope (FESEM). The result show that 60% of a-si film with a layer of 400 nm Ge buried is crystallized at growth temperature of 800 °C. The surface roughness and average surface grain size obtained by AFM is 2.39 nm and 60 nm for the crystallized film, respectively. The films growth at temperature of 500°C and 650 °C shows a PL spectrum band from 1.6 eV to 1.8 eV, and the PL peak shifts to lower energy as the growth temperature increased. As for the film grown at 800 °C, the PL spectrum is nearly extinguished. The crystallization of a-Si film induced by buried Ge might be a useful technology to develop high quality poly-Si film without annealing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-102

Citation:

Online since:

October 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. Gordon, D.V. Gestel, K.V. Nieuwenhuysen, L. Carnel, et al., Thin Solid Films, 487 (2005), p.113.

Google Scholar

[2] S. I. Muramatsu, Y. Minagawa, F. Oka, et al., Sol. Energy Mater. Sol. Cells, 74 ( 2002), p.275.

Google Scholar

[3] L. Pereira, P. Barquinha, E. Fortunato, R. Martins, Thin Solid Films, 487 (2005), p.102.

Google Scholar

[4] M. Wong, H. S. Kwok, Microelectron. J., 35 (2004), p.337.

Google Scholar

[5] J. B. Boyce, J. P. Lu, J. Ho, R. A. Street, et al., J. Non-Cryst. Solids, 299-302 (2002), p.731.

Google Scholar

[6] T. Sameshima, H. Watakabe, N. Andoh, et al, Thin Solid Films, 487(2005), p.63.

Google Scholar

[7] T. Sameshima, H. Watakabe, N. Andoh et al., Sol. Energy Mater. Sol. Cells, 66 (2001), p.381.

Google Scholar

[8] C. D. Park, H.Y. Kim, M. H. Cho, et al., Thin Solid Films, 359 (2000), p.268.

Google Scholar

[9] G Liu, S. J. Fonash: Appl. Phys. Lett., 55 (1989), p.660.

Google Scholar

[10] D. Dimova-Malinovska, O. Angelov, M. Sendova-Vassileva, et al., Vacuum, 76 (2004), p.151.

DOI: 10.1016/j.vacuum.2004.07.057

Google Scholar

[11] X. LI , Y. ZOHAR, W. Wong, et al., Sens. Actuators B, 82 (2000), p.281.

Google Scholar

[12] L. Pereira, H. Águas, R. M. Martins, J. Non-Cryst. Solids, 338-340 (2004), pp.178-182.

Google Scholar

[13] L. Pereira, H. Águas, R. M. S. Martins, et al., Thin Solid Films, 451-452 (2004), p.334.

Google Scholar

[14] S.W. Lee, S.K. Joo, IEEE Electron Device Lett., 17 (1996), p.407.

Google Scholar

[15] V. Subr emanian, K. C. Saraswatt, IEEE Trans. Electron Devices, 45 (1998), p. (1934).

Google Scholar

[16] V. Subremanian, M. Toita, N.R. Ibrahim, et al, IEEE Electron Device Lett., (1999), p.341.

Google Scholar

[17] Y. Wang, N. Herron, Phys. Rev. B, 42 (1990), p.7253.

Google Scholar