Nonlinear Dynamic Response Analysis of the Braced Steel Frame with Wedge Devices

Abstract:

Article Preview

In order to research the nonlinear dynamic respond analysis of a new braced steel frame with wedge devices under the action of earthquake, its damping mechanism is analyzed, and the computational model is obtained. Based on the mechanism of multiple resistant lateral system, the explicit nonlinear dynamic analysis and dynamic contact algorithm are adopted to separately analyze the steel frame with no brace, with centric and eccentric brace, and with the new braced wedge block. During the analysis, in order to take the material and geometrical bi-nonlinear into account, the material model is chosen as the bilinear equivalent strength, and the explicit centered difference algorithm is adopted. It can be obtained from structural deformation and energy and so on. The results show that the stiffness of structure decays after plastic deformation in the earthquake effect, and the hysteresis energy consumption and system dumping appear. The nonlinear dynamic response of steel frame is affected by resistant lateral stiffness, plastic deformation, and system damping. The braced steel frame with wedge block regulates the displacement and acceleration response with yield energy dissipation of brace, as it provides resistance lateral stiffness to control the deformation. This kind of structure has strong adaptability to earthquake intensity and good seismic performance.

Info:

Periodical:

Advanced Materials Research (Volumes 368-373)

Edited by:

Qing Yang, Li Hua Zhu, Jing Jing He, Zeng Feng Yan and Rui Ren

Pages:

685-689

DOI:

10.4028/www.scientific.net/AMR.368-373.685

Citation:

J. S. Lei et al., "Nonlinear Dynamic Response Analysis of the Braced Steel Frame with Wedge Devices", Advanced Materials Research, Vols. 368-373, pp. 685-689, 2012

Online since:

October 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.