[1]
S. Albers, M. Mitzenmacher: Average-Case Analyses of First Fit and Random Fit Bin Packing, Rand. Struc. Alg. Vol. 16(2000), p.240–259.
DOI: 10.1002/(sici)1098-2418(200005)16:3<240::aid-rsa2>3.0.co;2-v
Google Scholar
[2]
M. Yue: A simple proof of the inequality FFD (L) ≤ 11/9 OPT (L) + 1, ∀L for the FFD bin-packing algorithm, Acta Math. Appl. Sini. Vol. 7 (1991), p.321–331.
DOI: 10.1007/bf02009683
Google Scholar
[3]
B. Xia, Z. Tan: Tighter bounds of the First Fit algorithm for the bin-packing problem, Dis. Appl. Math. Vol. 158 (2010), p.1668–1675.
DOI: 10.1016/j.dam.2010.05.026
Google Scholar
[4]
R. Michael, D. Garey, S. Johnson: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman. p.226. (1979).
Google Scholar
[5]
V. Poirriez, N. Yanev, R. Andonov: A Hybrid Algorithm for the Unbounded Knapsack Problem. Disc. Opt. Vol. 6(2009), p.110–124.
DOI: 10.1016/j.disopt.2008.09.004
Google Scholar
[6]
S. Martello, P. Toth: Knapsack Problems: Algorithms and Computer Implementation, John Wiley and Sons Publishers (1990).
Google Scholar
[7]
G. Plateau, M. Elkihel: A hybrid algorithm for the 0-1 knapsack problem, Meth. Oper. Res., Vol. 49(1985), p.277–293.
Google Scholar
[8]
G. B. Dantzig: Discrete-Variable Extremum Problems, Oper. Res. Vol. 5, (1957), p.266–288.
Google Scholar
[9]
W.X. Xing, L. Kokin: Capacitated single machine scheduling and its on-line heuristics. IIE Trans. Vol. 34 (2002), p.991–998.
DOI: 10.1080/07408170208928928
Google Scholar
[10]
C. J. Liao, W. J. Che: Single-machine scheduling with periodic maintenance and non-resumable jobs. Comp. Oper. Res. Vol. 9(2003), p.1335–1347.
Google Scholar