Synthesis and Characterization of C-N-Cl-Codoped TiO2 with Enhanced Visible Light Response

Article Preview

Abstract:

A novel visible-light-active C-N-Cl-codoped TiO2 photocatalyst was prepared by a simple process. The as-prepared sample was characterized by XRD, XPS, and UV-Vis. The analysis results showed that the as-synthesized sample was anatase and possessed a narrow bad gap of 2.4 eV after the doping of carbon, nitrogen and chlorine. An obvious absorption for visible light was observed in the range of 400~700 nm for C-N-Cl-codoped TiO2. By degrading of methyl orange (MO) solution under the visible light (l>420 nm) irradiation, the synthesized photocatalyst showed 5 times photocatalytic activity than that of P25.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

431-434

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann: Chem. Rev. 95 (1995) , p.69.

Google Scholar

[2] K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen: Nature 440 (2006) , p.295.

DOI: 10.1038/440295a

Google Scholar

[3] J. S. Im, S. M. Yun, Y. S. Lee: Journal of Colloid and Interface Science 336(2009) , p.183.

Google Scholar

[4] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga: Science 293 (2001) , p.269.

Google Scholar

[5] G. Liu, X. W. Wang, L. Z. Wang, Z. G. Chen, F. Li, G. Q. Lu, H. M. Cheng: Journal of Colloid and Interface Science 334 (2009) , p.171.

Google Scholar

[6] W. J. Ren, Z. H. Ai, F. K. Jia, L. Z. Zhang, X. X. Fan, Z. G. Zou: Appl. Catal. B: Environ. 69 (2007) , p.138.

Google Scholar

[7] Y. Z. Li, D. S. Hwang, N. H. Lee, S. J. Kim: Chemical Physics Letters 404 (2005) , p.25.

Google Scholar

[8] C. Chen, M. Long, H. Zeng, W. M. Cai, B. X. Zhou, J. Y. Zhang, Y. H. Wu, D. W. Ding, D. Y. Wu: Journal of Molecular Catalysis A: Chemical 314 (2009) , p.35.

Google Scholar

[9] T. Umebayashi, T. S. Yamaki, S. Tanaka, K. Asai: Chem. Lett. 32 (2003) , p.330.

Google Scholar

[10] H. Akihiko, T. Hiroaki: Journal of Sol-Gel Science and Technology 22 (2001) , p.47.

Google Scholar

[11] H. Xu, Z. Zheng, L. Z. Zhang, H. L. Zhang, F. Deng: Journal of Solid State Chemistry 181 (2008) , p.2516.

Google Scholar

[12] D. Li, H. Haneda, S. Hishata, N. Ohashi: Chem. Mater. 17 (2005), p.2588.

Google Scholar

[13] D.G. Huanga, S. J. Liao, J. M. Liu, Z, Danga, L. Perrik: J. Photochem. Photobiol. A: Chem. 184 (2006), p.282.

Google Scholar

[14] S. J. Zhang, L. M Song: Catalysis Communications 10 (2009) , p.1725.

Google Scholar

[15] X. X. Yang, C. D. Cao, L. Erickson, K. Hohn, R. Maghirang, K. Klabunde: Journal of Catalysis 260(2008), p.128.

Google Scholar

[16] X. X. Yang, C. D. Cao, L. Erickson, K. Hohn, R. Maghirang, K. Klabunde: Applied Catalysis B: Environmental 91(2009), p.657.

Google Scholar

[17] D. B. Hamal, K. J. Klabunde: Journal of Colloid and Interface 311(2007), p.514.

Google Scholar

[18] S. U. M. Khan, M. Al-Shahry, Jr. W. B. Ingler: Science 297 (2002) , p.2243.

Google Scholar

[19] L. Zhou, J. Deng, Y. B. Zhao, W. B. Liu, L. An, F. Chen: Materials Chemistry and Physics 17(2009), p.522.

Google Scholar

[20] C. Chen, H. Bai, C. Chang: J. Phys. Chem. C 111 (2007), p.15228.

Google Scholar

[21] L. K. Konstantinou, T. A. Albanis: Appl. Catal. B 114 (2004) , p.1.

Google Scholar