[1]
Yan Weipinga, Du Liqunb, Wang Jing, Ma Lingzhi, Zhu Jianbo, Simulation and experimental study of PCR chip based on silicon, Sensors and Actuators, vol. 108, 2005, p.695–699, doi: 10. 1016/j. snb. 2004. 11. 049.
DOI: 10.1016/j.snb.2004.11.049
Google Scholar
[2]
Zhan Zhao, Zheng Cui, Dafu Cui, Shanhong Xia, Monolithically integrated PCR biochip for DNA amplification, Sensors and Actuators, vol. 108, 2003, p.162–167, doi: 10. 1016/S0924-4247(03)00258-9.
DOI: 10.1016/s0924-4247(03)00258-9
Google Scholar
[3]
Troels Balmer Christensen, Dang Doung Bang, Anders Wol, Multiplex polymerase chain reaction (PCR) on a SU-8 chip, Microelectronic Engineering, vol. 85, 2005, p.1278–1281, doi: 10. 1016/ j. mee. 2008. 01. 066.
DOI: 10.1016/j.mee.2008.01.066
Google Scholar
[4]
Alain Gliere, Cyril Delattre, Modeling and fabrication of capillary stop valvesfor planar microfluidic systems, Sensors and Actuators, vol. 130–131, 2006, p.601–608, doi: 10. 1016/j. sna. 2005. 12. 011.
DOI: 10.1016/j.sna.2005.12.011
Google Scholar
[5]
Chunsun Zhang, Da Xing, Yuyuan Li, Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trends, Biotechnology Advances, vol. 25, 2007, p.483–514, doi: 10. 1016/j. biotechadv. 2007. 05. 003.
DOI: 10.1016/j.biotechadv.2007.05.003
Google Scholar
[6]
M. Sobocinski, J. Juuti, H. Jantunen, L. Golonka, Piezoelectric unimorph valve assembled on an LTCC substrate, Sensors and Actuators, vol. 149, 2009, p.315–319, doi: 10. 1016/j. sna. 2008. 11. 025.
DOI: 10.1016/j.sna.2008.11.025
Google Scholar
[7]
Byunghoon Bae, Jeahyeong Han, Richard I. Masel, and Mark A. Shannon, A bidirectional electrostatic microvalve with microsecond switching performance, Micro Electro Mechanical Systems. vol. 16, Dec. 2007, pp.1461-1471.
DOI: 10.1109/jmems.2007.907782
Google Scholar
[8]
DuckJoong Kim, SungRak Kim, JiYoung Park, JuYeoul Baek, SeonJeong Kim, Kyung Sun, TaeSoo Lee, SangHoon Lee, Hydrodynamic fabrication and characterization of a pH-responsivemicroscale spherical actuating element, Sensors and Actuators, vol. 134, 2007, p.321.
DOI: 10.1016/j.sna.2006.05.015
Google Scholar
[9]
Dongshin Kim, David J. Beebe, A bi-polymer micro one-way valve, Sensors and Actuators, vol. 136, 2007, p.426–433, doi: 10. 1016/j. sna. 2006. 11. 004.
DOI: 10.1016/j.sna.2006.11.004
Google Scholar
[10]
Zhishan Hua, Onnop Srivannavit, Yongmei Xia and Erdogan Gulari, A compact chemical-resistant microvalve array using parylene membrane and pneumatic actuation, Proc. International Conference on MEMS, NANO and Smart Systems, (2004).
DOI: 10.1109/icmens.2004.1508917
Google Scholar
[11]
Marc A. Unger, Hou-Pu Chou, Todd Thorsen, Axel Scherer, Stephen R. Quake, Monolithic microfabricated valves and pumps by multilayer soft lithography, Science, 2000, pp.113-116, doi: 10. 1126/science. 288. 5463. 113.
DOI: 10.1126/science.288.5463.113
Google Scholar
[12]
Hidekuni Takao, Kazuhiro Miyamura, Hiroyuki Ebi, Mitsuaki Ashiki, Kazuaki Sawada, Makoto Ishida, A MEMS microvalve with PDMS diaphragm and two-chamber configuration of thermo-pneumatic actuator for integrated blood test system on silicon, Sensors and Actuators, vol. 119, 2005, p.468.
DOI: 10.1016/j.sna.2004.10.023
Google Scholar
[13]
Patrick M. Pilarski, Sophia Adamia, Christopher J. Backhouse, An adaptable microvalving system for on-chip polymerase chain reactions, Journal of Immunological Methods, vol. 305, 2005, p.48–58, doi: 10. 1016/j. jim. 2005. 07. 009.
DOI: 10.1016/j.jim.2005.07.009
Google Scholar
[14]
Ranjit Prakash Æ Karan V. I. S. Kaler, An integrated genetic analysis microfluidic platform with valves and a PCR chip reusability method to avoid contamination, Microfluid Nanofluid, vol. 3, 2007, p.177–187, doi: 10. 1007/s10404-006-0114-7.
DOI: 10.1007/s10404-006-0114-7
Google Scholar