Stabilization for Quantized Feedback Control Systems: An LMI Approach

Article Preview

Abstract:

This paper addresses the feedback stabilization problem for quantized feedback control systems, where sensors and controllers are connected by a digital communication channel. A dynamic, logarithmic quantization scheme is proposed. It is shown that quantized feedback control problems can be converted to robust control problems. The proof techniques rely on the LMI approach. Simulation results show the validity of the proposed quantization policy.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 383-390)

Pages:

2161-2167

Citation:

Online since:

November 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. W. Brockert and D. Liberzon, Quantized feedback stabilization of linear systems, IEEE Trans. Autom. Control, vol. 45, no. 7, pp.1279-1289, Jul. (2000).

DOI: 10.1109/9.867021

Google Scholar

[2] D. F. Delchamps, Stabilizing a linear system with quantized state feedback, IEEE Trans, Autom. Control, vol. 35, no. 8, pp.916-924, Aug. (1990).

DOI: 10.1109/9.58500

Google Scholar

[3] N. Elia and S. K. Mitter, Stabilizing a linear systems with limited information, IEEE Trans Autom, Control, vol. 46, no. 9, pp.1384-1400, Sep. (2001).

DOI: 10.1109/9.948466

Google Scholar

[4] J. P. Hespanha, A. Ortega, and L. Vasudevan, Towards the control of linear systems with minimum bit-rate, in Proc. 15th Int. Symp. Math. Theory Networks and Syst, (2002).

Google Scholar

[5] S. Tatikonda and S. K. Mitter, Control under communication constraints, IEEE Trans. Autom. Control, vol. 49, no. 7, pp.1056-1068, Jul. (2004).

DOI: 10.1109/tac.2004.831187

Google Scholar

[6] G. N. Nair and R.J. Evans, Stabilizability of stochastic linear systems with finite feedback data rates, SIAM J. Control Optim, vol. 43, pp.413-436, (2004).

DOI: 10.1137/s0363012902402116

Google Scholar

[7] M. Chow and Y. Tipsuwan, Network-based control systems: a tutorial, " In Proceedings of IECON, 01: the 27th annual conference of the IEEE industrial electronics society, pp.1593-1602, (2001).

DOI: 10.1109/iecon.2001.975529

Google Scholar

[8] J. Nilsson, B. Bernhardsson and B. Wittenmark, Stochastic analysis and control of real-time system with random time delays, Automatica, vol. 34, no. 1, pp.57-64, Jan. (1998).

DOI: 10.1016/s0005-1098(97)00170-2

Google Scholar

[9] G. Walsh, H. Ye and L. Bushnell, Stability analysis of networked control systems, IEEE Trans. Control Systems Technology, vol. 10, no. 2, pp.438-446, Feb. (1998).

DOI: 10.1109/87.998034

Google Scholar

[10] W. Zhang, M. Branicky and S. Phillips, Stability of networked control systems, IEEE Control Systems Magazine, vol. 21, no. 1, pp.84-99, Jan. (2001).

Google Scholar

[11] G. C. Goodwin, H. Haimovich, D. E. Quevedo, and J. S. Welsh A moving horizon approach to networked control system design, IEEE Control Systems Magazine, vol. 49, no. 9, pp.1427-1445, Nov. (2004).

DOI: 10.1109/tac.2004.834132

Google Scholar

[12] D. Yue, Q. L. Han and J. Lam, Network-based robust control of systems with uncertainty, Automatica, vol. 41, no. 6, pp.999-1007, (2005).

Google Scholar

[13] H. Gao and T. Chen, estimation for uncertain systems with limited communication capacity, IEEE Trans. Automat. Control, vol. 52, no. 11, pp.2071-2084, Nov. (2007).

DOI: 10.1109/tac.2007.908316

Google Scholar

[14] Y. L. Wang and G. H. Yang, control of networked control systems with time delay and packet disordering, IET Control Theory & Applications, vol. 1, no. 5, pp.1344-1354, May. (2007).

DOI: 10.1049/iet-cta:20060489

Google Scholar

[15] Y. L. Wang and G. H. Yang, Multiple communication channels-based packet dropout compensation for networked control system, ", IET Control Theory \& Applications, vol. 2, no. 8, pp.717-727, Aug. (2008).

DOI: 10.1049/iet-cta:20070352

Google Scholar

[16] J. Baillieul, Feedback designs in information based control, In Stochastic Theory and Control Proceedings of a Workshop Held in Lawrence, Kansas, B. Pasik-Duncan, Ed. New York: Springer-Verlag, pp.35-57, (2001).

DOI: 10.1007/3-540-48022-6_3

Google Scholar

[17] S. Yuksel and T. Basar, Communication constraints for decentralized stabilizability with time-invariant policies, IEEE Trans. Automat. Control, vol. 52, no. 6, pp.1060-1066, Jun. (2007).

DOI: 10.1109/tac.2007.899085

Google Scholar