[1]
R. W. Brockert and D. Liberzon, Quantized feedback stabilization of linear systems, IEEE Trans. Autom. Control, vol. 45, no. 7, pp.1279-1289, Jul. (2000).
DOI: 10.1109/9.867021
Google Scholar
[2]
D. F. Delchamps, Stabilizing a linear system with quantized state feedback, IEEE Trans, Autom. Control, vol. 35, no. 8, pp.916-924, Aug. (1990).
DOI: 10.1109/9.58500
Google Scholar
[3]
N. Elia and S. K. Mitter, Stabilizing a linear systems with limited information, IEEE Trans Autom, Control, vol. 46, no. 9, pp.1384-1400, Sep. (2001).
DOI: 10.1109/9.948466
Google Scholar
[4]
J. P. Hespanha, A. Ortega, and L. Vasudevan, Towards the control of linear systems with minimum bit-rate, in Proc. 15th Int. Symp. Math. Theory Networks and Syst, (2002).
Google Scholar
[5]
S. Tatikonda and S. K. Mitter, Control under communication constraints, IEEE Trans. Autom. Control, vol. 49, no. 7, pp.1056-1068, Jul. (2004).
DOI: 10.1109/tac.2004.831187
Google Scholar
[6]
G. N. Nair and R.J. Evans, Stabilizability of stochastic linear systems with finite feedback data rates, SIAM J. Control Optim, vol. 43, pp.413-436, (2004).
DOI: 10.1137/s0363012902402116
Google Scholar
[7]
M. Chow and Y. Tipsuwan, Network-based control systems: a tutorial, " In Proceedings of IECON, 01: the 27th annual conference of the IEEE industrial electronics society, pp.1593-1602, (2001).
DOI: 10.1109/iecon.2001.975529
Google Scholar
[8]
J. Nilsson, B. Bernhardsson and B. Wittenmark, Stochastic analysis and control of real-time system with random time delays, Automatica, vol. 34, no. 1, pp.57-64, Jan. (1998).
DOI: 10.1016/s0005-1098(97)00170-2
Google Scholar
[9]
G. Walsh, H. Ye and L. Bushnell, Stability analysis of networked control systems, IEEE Trans. Control Systems Technology, vol. 10, no. 2, pp.438-446, Feb. (1998).
DOI: 10.1109/87.998034
Google Scholar
[10]
W. Zhang, M. Branicky and S. Phillips, Stability of networked control systems, IEEE Control Systems Magazine, vol. 21, no. 1, pp.84-99, Jan. (2001).
Google Scholar
[11]
G. C. Goodwin, H. Haimovich, D. E. Quevedo, and J. S. Welsh A moving horizon approach to networked control system design, IEEE Control Systems Magazine, vol. 49, no. 9, pp.1427-1445, Nov. (2004).
DOI: 10.1109/tac.2004.834132
Google Scholar
[12]
D. Yue, Q. L. Han and J. Lam, Network-based robust control of systems with uncertainty, Automatica, vol. 41, no. 6, pp.999-1007, (2005).
Google Scholar
[13]
H. Gao and T. Chen, estimation for uncertain systems with limited communication capacity, IEEE Trans. Automat. Control, vol. 52, no. 11, pp.2071-2084, Nov. (2007).
DOI: 10.1109/tac.2007.908316
Google Scholar
[14]
Y. L. Wang and G. H. Yang, control of networked control systems with time delay and packet disordering, IET Control Theory & Applications, vol. 1, no. 5, pp.1344-1354, May. (2007).
DOI: 10.1049/iet-cta:20060489
Google Scholar
[15]
Y. L. Wang and G. H. Yang, Multiple communication channels-based packet dropout compensation for networked control system, ", IET Control Theory \& Applications, vol. 2, no. 8, pp.717-727, Aug. (2008).
DOI: 10.1049/iet-cta:20070352
Google Scholar
[16]
J. Baillieul, Feedback designs in information based control, In Stochastic Theory and Control Proceedings of a Workshop Held in Lawrence, Kansas, B. Pasik-Duncan, Ed. New York: Springer-Verlag, pp.35-57, (2001).
DOI: 10.1007/3-540-48022-6_3
Google Scholar
[17]
S. Yuksel and T. Basar, Communication constraints for decentralized stabilizability with time-invariant policies, IEEE Trans. Automat. Control, vol. 52, no. 6, pp.1060-1066, Jun. (2007).
DOI: 10.1109/tac.2007.899085
Google Scholar