[1]
An, T. Kitada, and M. Matsumora, Elasto-plastic and finite element analysis using beam-column element for concrete filled steel tubes subjected to torsion, Mem Fac Eng Osaka City Univ, vol. 46, p.59–63, (2005).
Google Scholar
[2]
Zhang, S. Liu, and Z. Tang, Design optimization of cross-sectional configuration of rib-reinforced thin-walled beam, Thin-Walled Structures, vol. 47, no. 8-9, p.868–878, (2009).
DOI: 10.1016/j.tws.2009.02.009
Google Scholar
[3]
Kravanja and T. Zula, Cost optimization of industrial steel building structures, Advances in Engineering Software, vol. 41, no. 3, p.442–450, (2010).
DOI: 10.1016/j.advengsoft.2009.03.005
Google Scholar
[4]
Y. -L. Hsu, A review of structural shape optimization, Computers in Industry, vol. 25, no. 1, p.3–13, (1994).
Google Scholar
[5]
V. Apostol and J. L. T. Santos, Sensitivity analysis and optimization of truss/beam components of arbitrary cross-section–i. axial stresses, Computers & Structures, vol. 58, no. 4, p.727–737, (1996).
DOI: 10.1016/0045-7949(95)00192-j
Google Scholar
[6]
Y. Y. Kim and T. S. Kim, Topology optimization of beam cross sections, International Journal of Solids and Structures, vol. 37, no. 3, p.477–493, (2000).
DOI: 10.1016/s0020-7683(99)00015-3
Google Scholar
[7]
L. Gil and A. Andreu, Shape and cross-section optimisation of a truss structure, Computers & Structures, vol. 79, no. 7, p.681–689, (2001).
DOI: 10.1016/s0045-7949(00)00182-6
Google Scholar
[8]
P. Vinot, S. Cogan, and J. Piranda, Shape optimization of thin-walled beam-like structures, Thin-Walled Structures, vol. 39, no. 7, p.611–630, (2001).
DOI: 10.1016/s0263-8231(01)00024-6
Google Scholar
[9]
D. R. Griffiths and J. C. Miles, Determining the optimal cross-section of beams, Advanced Engineering Informatics, vol. 17, no. 2, p.59–76, (2003).
DOI: 10.1016/s1474-0346(03)00039-9
Google Scholar
[10]
W. Yu, D. H. Hodges, V. V. Volovoi, , and D. F. Eduardo, The vlasov theory of the variational asymptotic beam sectional analysis, in 45th Structures, Structural Dynamics, and Materials Conference, 2004, p.19–22.
DOI: 10.2514/6.2004-1520
Google Scholar
[11]
M. -H. Hsu and Y. -L. Hsu, Interpreting three-dimensional structural topology optimization results, Computers & Structures, vol. 83, no. 4-5, p.327–337, (2005).
DOI: 10.1016/j.compstruc.2004.09.005
Google Scholar
[12]
H. Mehne, On solving constrained shape optimization problems for finding the optimum shape of a bar cross-section, Applied Numerical Mathematics, vol. 58, no. 8, p.1129–1141, (2008).
DOI: 10.1016/j.apnum.2007.04.019
Google Scholar
[13]
S. Kalanta, J. Atkociunas, and A. Venskus, Discrete optimization problems of the steel bar structures, " Engineering Structures, vol. 31, no. 6, p.1298.
DOI: 10.1016/j.engstruct.2009.01.004
Google Scholar
[14]
M. Ohsaki, H. Tagawa, and P. Pan, Shape optimization of reduced beam section under cyclic loads, Journal of Constructional Steel Research, vol. 65, no. 7, p.1511–1519, (2009).
DOI: 10.1016/j.jcsr.2009.03.001
Google Scholar
[15]
G. Fabbri, Optimum cross-section design of internally finned tubes cooled by a viscous fluid, Control Engineering Practice, vol. 13, no. 7, p.929–938, (2005).
DOI: 10.1016/j.conengprac.2004.11.009
Google Scholar
[16]
S. Ishiguri, M. Yamaguchi, S. Fukui, J. Ogawa, and T. Sato, Study on cross section of high temperature superconducting coil, Cryogenics, vol. 47, no. 1, p.31–35, (2007).
DOI: 10.1016/j.cryogenics.2006.09.003
Google Scholar
[17]
R. Pavazza, On the load distribution of thin-walled beams subjected to bending with respect to the cross-section distortion, International Journal of Mechanical Sciences, vol. 44, no. 2, p.423–442, (2002).
DOI: 10.1016/s0020-7403(01)00089-3
Google Scholar
[18]
R. Pavazza and B. Blagojevic, On the cross-section distortion of thin-walled beams with multi-cell cross-sections subjected to bending, International Journal of Solids and Structures, vol. 42, no. 3-4, p.901–925, (2005).
DOI: 10.1016/j.ijsolstr.2004.06.036
Google Scholar
[19]
J. A. Zukas, Impact dynamics: Theory and experiment, US Army Armament Research and Development Command, Ballistic Research Laboratory, Aberden Proving Ground, Maryland, Public Release ARBRL-TR-02271, October (1980).
Google Scholar
[20]
W. A. Siswanto and T. W. B. Riyadi, The use of abaqus for teaching the development of cavity defects in forward extrusion processes, International Journal of Mechanical Engineering Education, vol. 36, p.221–224, July (2008).
DOI: 10.7227/ijmee.36.3.5
Google Scholar
[21]
Impact-Developer-Team, Impact Users and Programmers Manual. [Online]. Available: http: / /Impact. sourceforge. net.
Google Scholar
[22]
R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt, Concepts and Applications of Finite Element Analysis, 4th ed. Wiley, October (2002).
Google Scholar
[23]
T. Belytschko, J. I. Lin, and T. Chen-Shyh, Explicit algorithms for the nonlinear dynamics of shells, Computer Methods in Applied Mechanics and Engineering, vol. 42, no. 2, p.225–251, (1984).
DOI: 10.1016/0045-7825(84)90026-4
Google Scholar