Preparation of Self-Releasing Glaze Ceramic Materials Utilizing Red Mud

Article Preview

Abstract:

Red mud is the main solid residue generated during the production of alumina by means of the Bayer process. In order to expand the comprehensive utilization field of red mud and develop new ceramic products with low radioactivity utilizing red mud, the exploration of preparing self-releasing glaze ceramic materials using red mud as raw material was carried out. During the exploration, the self-releasing glaze ceramic materials with low radiation level were produced by normal pressure sintering process using the main ingredients of red mud, red sandstone, barium carbonate and ball clay. The properties of the self-releasing glaze ceramic samples were investigated by the measurements of mechanical properties, X-ray diffraction (XRD), scanning electron microscopy (SEM) and radiation measurement. The results show that the self-releasing glaze ceramic materials have good mechanical properties (the bulk density, 3.10 g/cm3; the compressive strength, 78.00 MPa). Adding barium carbonate to the raw materials and then calcine them to ceramics, which can extend the sintering temperature range and the radioactivity level of the self-releasing glaze ceramic materials can be reduced to that of the natural radioactive background of Guilin Area, Karst landform (the average 60 Total/Timer).

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 383-390)

Pages:

3366-3373

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Jiakuan Yang and Bo Xiao, Development of unsintered construction materials from red mud wastes produced in the sintering alumina process, Constr. Build. Mater, vol. 22, Dec. 2008, pp.2299-2307, doi: 10. 1016/j. conbuildmat. 2007. 10. 005.

DOI: 10.1016/j.conbuildmat.2007.10.005

Google Scholar

[2] P.E. Tsakiridis, S. Agatzini-Leonardou and P. Oustadakis, Red mud addition in the raw meal for the production of Portland cement clinker, J. Hazard. Mater, vol. 116, Dec. 2004, pp.103-110, doi: 10. 1016/j. jhazmat. 2004. 08. 002.

DOI: 10.1016/j.jhazmat.2004.08.002

Google Scholar

[3] Pankaj Kasliwal and P. S. T. Sai, Enrichment of titanium dioxide in red mud: kinetic study, Hydrometallurgy, vol. 53, Jul. 1999, pp.73-87, doi: 10. 1016/S0304-386X (99)00034-1.

DOI: 10.1016/s0304-386x(99)00034-1

Google Scholar

[4] Edith Poulin, Jean-Francois Blais and Guy Mercier, Transformation of red mud from aluminium industry into a coagulant for wastewater treatment, Hydrometallurgy, vol. 92, May. 2008, pp.16-25, doi: 10. 1016/j. hydromet. 2008. 02. 004.

DOI: 10.1016/j.hydromet.2008.02.004

Google Scholar

[5] Fotini Kehagia, A successful pilot project demonstrating the re-use potential of bauxite residue in embankment construction, Resour. Conserv. Recy, vol. 54 May. 2010, pp.417-421, doi: 10. 1016/j. resconrec. 2009. 10. 001.

DOI: 10.1016/j.resconrec.2009.10.001

Google Scholar

[6] Wanchao Liu, Jiakuan Yang and Bo Xiao, Review on treatment and utilization of bauxite residues in China, Int. J. Miner. Process, vol. 93, Dec. 2009, pp.220-231, doi: 10. 1016/j. minpro. 2009. 08. 005.

Google Scholar

[7] L. Y. Li, A study of iron mineral transformation to reduce red mud tailings, Waste. Manage, vol. 21, 2001, pp.525-534, doi: 10. 1016/S0956-053X (00)00107-0.

DOI: 10.1016/s0956-053x(00)00107-0

Google Scholar

[8] D. I. Srnirnov and T. V. Molchanova, The investigation of sulphuric acid sorption recovery of scandium and uranium from the red mud of alumina production, Hydrometallurgy, vol. 45, Jul. 1997, pp.249-259, doi: 10. 1016/S0304-386X (96)00070-9.

DOI: 10.1016/s0304-386x(96)00070-9

Google Scholar

[9] Yunus Cengeloglu, Ali Tor, Gulsin Arslan, Mustafa Ersoz and Sait Gezgin, Removal of boron from aqueous solution by using neutralized red mud, J. Hazard. Mater, vol. 142, Apr. 2007, pp.412-417, doi: 10. 1016/j. jhazmat. 2006. 08. 037.

DOI: 10.1016/j.jhazmat.2006.08.037

Google Scholar

[10] C. Brunori, C. Cremisini, P. Massanisso, V. Pinto and L. Torricelli, Reuse of treated red mud bauxite waste: studies on environmental compatibility, J. Hazard. Mater, vol. 117, Jan. 2005, pp.55-63, doi: 10. 1016/j. jhazmat. 2004. 09. 010.

DOI: 10.1016/j.jhazmat.2004.09.010

Google Scholar

[11] Laura Santona, Paola Castaldi and Pietro Melis, Evaluation of the interaction mechanisms between red muds and heavy metals, J. Hazard. Mater, vol. 136, Aug. 2006, pp.324-329, doi: 10. 1016/j. jhazmat. 2005. 12. 022.

DOI: 10.1016/j.jhazmat.2005.12.022

Google Scholar

[12] Yiran Li, JunWang, Zhaokun Luan and Zhen Liang, Arsenic removal from aqueous solution using ferrous based red mud sludge, J. Hazard. Mater, vol. 177, May. 2010, pp.131-137, doi: 10. 1016/j. jhazmat. 2009. 12. 006.

DOI: 10.1016/j.jhazmat.2009.12.006

Google Scholar

[13] Semra, Coruh and Osman Nuri Ergun, Use of fly ash, phosphogypsum and red mud as a liner material for the disposal of hazardous zinc leach residue waste, J. Hazard. Mater, vol. 173, Jan. 2010, pp.468-473, doi: 10. 1016/j. jhazmat. 2009. 08. 108.

DOI: 10.1016/j.jhazmat.2009.08.108

Google Scholar

[14] Shaobin Wang, H.M. Ang and M.O. Tade, Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes, Chemosphere, vol. 72, Aug. 2008, pp.1621-1635, doi: 10. 1016/j. chemosphere. 2008. 05. 013.

DOI: 10.1016/j.chemosphere.2008.05.013

Google Scholar

[15] Anna Maria Marabini, Paolo Plescia, Dante Maccari, Francesco Burragato and Mario Pelino, New materials from industrial and mining wastes: glass-ceramics and glass-and rock-wool fibre, Int. J. Miner. Process, vol. 53, Feb. 1998, pp.121-134.

DOI: 10.1016/s0301-7516(97)00062-8

Google Scholar

[16] Vincenzo M. Sglavo, Stefano Maurina, Alexia Conci, Antonio Salviati, Giovanni Carturan and Giorgio Cocco, Bauxite 'red mud' in the ceramic industry. Part 2: production of clay-based ceramics, J. Eur. Ceram. Soc, vol. 20, Mar. 2000, pp.245-252.

DOI: 10.1016/s0955-2219(99)00156-9

Google Scholar

[17] E. Bernardo, L. Esposito, E. Rambaldi, A. Tucci, Y. Pontikes and G.N. Angelopoulos, Sintered esseneite-wollastonite-plagioclase glass-ceramics from vitrified waste, J. Eur. Ceram. Soc, vol. 29, Nov. 2009, pp.2921-2927.

DOI: 10.1016/j.jeurceramsoc.2009.05.017

Google Scholar

[18] M. Erol, S. Kucukbayrak and A. Ersoy-Mericboyu, The influence of the binder on the properties of sintered glass-ceramics produced from industrial wastes, Ceram. Int, vol. 35, Sept. 2009, pp.2609-2617, doi: 10. 1016/j. ceramint. 2009. 02. 028.

DOI: 10.1016/j.ceramint.2009.02.028

Google Scholar

[19] Nevin Yalcin and Vahdettin Sevinc, Utilization of bauxite waste in ceramic glazes, Ceram. Int, vol. 26, Jun. 2000, pp.485-493, doi: 10. 1016/S0272-8842(99)00083-8.

DOI: 10.1016/s0272-8842(99)00083-8

Google Scholar

[20] P. Merkin and V. I. Nanazashvili, Self-glazing ceramic tiles based on acidic igneous glasses, Glass. Ceram+, vol. 44, Dec. 1987, pp.504-506, doi: 10. 1007/BF00696768.

DOI: 10.1007/bf00696768

Google Scholar

[21] E. Kamseu, C. Leonelli, D.N. Boccaccini, P. Veronesi, P. Miselli, Giancarlo Pellacani and U. Chinje Melo, Characterisation of porcelain compositions using two china clays from Cameroon, Ceram. Int, vol. 33, Jul. 2007, pp.851-857.

DOI: 10.1016/j.ceramint.2006.01.025

Google Scholar

[22] GB/T 3810. 3–2006, Test methods of ceramic tiles–Part 3: Determination of water absorption, apparent porosity, apparent relative density and bulk density, China, (2006).

DOI: 10.3403/30321734

Google Scholar

[23] QB/T 1548–1992, Test method for linear shrinkage of ceramic body, China, (1992).

Google Scholar

[24] GB/T 4740–1999, Standard test method for compressive resistance of ceramic materials, China, (1999).

Google Scholar

[25] GB 5101–2003, Fired common bricks, China, (2003).

Google Scholar