The Generation of Droplets with Micro-Liter Volume Using Surface Acoustic Wave

Article Preview

Abstract:

We developed a digital micro-fluid generator for the discrete dispensing of bio-samples into a bio-analytical unit on piezoelectric substrate. This micro-fluid device is comprised of a micro-channel, a step and a 1280 yx-LiNbO3 substrate. An ejector jet pump is used for offering a uniform linear velocity. After formed micro-fluid from micro-channel arrives the step, it will be down to the piezoelectric substrate due to its gravity and will be transported by surface acoustic wave (SAW). The micro-fluid generator can generate mono-disperse digital micro-fluid of micro-liter volume relied on the gap between micro-channel and the step. The generation time of digital micro-fluid is about several seconds time, which is also relation to the gap. And the digital micro-fluid generation is repeatable and stable with a typical variation of less than 7% of digital micro-fluid volume. Our digital micro-fluid generator can be effectively applied to biochemical analysis on a piezoelectric substrate.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 383-390)

Pages:

5106-5110

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. N. Kim, Y. l Lee W.G. Koh, Fabrication of microfluidic devices incorporating bead-based reaction and microarray-based detection system for enzymatic assay [J], Sens. Actuators B Chem., 2009, 137 (1), P305–312.

DOI: 10.1016/j.snb.2008.12.042

Google Scholar

[2] S.L. Lonigro, F. Valerio, M.D. Angelis, P.D. Bellis, P. Lavermicocca, Microfluidic technology applied to cell-wall protein analysis of olive related lactic acid bacteria [J], Itl J. Food Microbi. 2009, 130 (1), P6–11.

DOI: 10.1016/j.ijfoodmicro.2008.12.018

Google Scholar

[3] T. H. Fang, N. Ramalingam, X.D. Dong, T. S. Ngin, X.T. Zeng, Real-time PCR microfluidic devices with concurrent electrochemical detection [J], Biosens. Bioelectron., 2009, 24 (7), P2131–213.

Google Scholar

[4] P F. B. Myers and L. P. Lee, Innovations in optical microfluidic technologies for point-of-care diagnostics [J], Lab Chip, 2008, 8 (12), P2015-(2031).

DOI: 10.1039/b812343h

Google Scholar

[5] X. Weng, C. H. Chon , H. Jiang , D.Q. Li, Rapid detection of formaldehyde concentration in food on a polydimethylsiloxane (PDMS) microfluidic chip [J], 2009, Food Chem., 114 (3), 1079–1082.

DOI: 10.1016/j.foodchem.2008.10.027

Google Scholar

[6] R. Malk,Y. Fouillet, L. Davoust, Rotating flow within a droplet actuated with AC EWOD [J], Procedia chemistry, 1(1)1107-1110.

DOI: 10.1016/j.proche.2009.07.276

Google Scholar

[7] Chun-guang, Zhang-Run Xu, Jian-Hua Wang, Manipulation of droplets in microfluidic systems [J], Trends in analytical chemistry, 2010, 29(2), P141-157.

Google Scholar

[8] Amelia L. Markey, Stephan Mohr, Philip J.R. Day, High-throughput droplet PCR [J], Methods, 2010, 50(4), P277-281.

DOI: 10.1016/j.ymeth.2010.01.030

Google Scholar

[9] T. Thorsen, R.W. Roberts, F.H. Arnold, S.R. Quake, Dynamic pattern formation in a vesicle-generating microfluidic device [J], Phys. Rev. Lett. , 2001, 86(18), P4163-4166.

DOI: 10.1103/physrevlett.86.4163

Google Scholar

[10] Yung-Chieh Tan, Vittorio Cristini, and Abraham P. Lee, Monodispersed microfluidic droplet generation by shear focusing microfluidic device [J], Sensors and Actuators B , 2006, 114(1), P350-356.

DOI: 10.1016/j.snb.2005.06.008

Google Scholar

[11] Zhi Wen Tan, Su Gui Gisela Teo and Junhui Hu, Ultrasonic generation and rotation of a small droplet at the tip of a hypodermic needle [J], Journal of applied physics , 2008, 104(10), P104902-1-5.

DOI: 10.1063/1.3021099

Google Scholar

[12] Alan Renaudin Jean-Pierre Sozanski, Bemard Verbeke, Monitoring SAW-actuated microdroplets in view of biological applications[J]. Sensors and Actuators B: Chemical, 2009, 138(1), P374-382.

DOI: 10.1016/j.snb.2009.02.031

Google Scholar

[13] T. K. Uchida, T. Suzuki and S. Shiokawa, Investigation of acoustic streaming excited by surface acoustic waves[C], IEEE Ultrasonics symposium, New York, USA, Nov. 7-10, (1995).

DOI: 10.1109/ultsym.1995.495749

Google Scholar

[14] S. Shiokawa,Y. Matsui and T. Ueda, Liguid streaming and droplet formation caused by leaky Rayleigh wave[C], IEEE Ultrasonics symposium, New York, USA, Oct. 3-6, (1989).

DOI: 10.1109/ultsym.1989.67063

Google Scholar