[1]
Noor, A. K. and Burton, W.S., Assessment of shear deformation theories for multilayered composite plates, Appl. Mech. Rev. 42(1), 1-13 (1989).
DOI: 10.1115/1.3152418
Google Scholar
[2]
Kant, T. and Swaminathan, K., Estimation of transverse/interlaminar stresses in laminated composites - A selective review and survey of current developments, Compos. Struct. 49(1), 65-75 (2001).
DOI: 10.1016/s0263-8223(99)00126-9
Google Scholar
[3]
Kant, T., Numerical analysis of thick plates, Comput. Methods in Appl. Mech. and Engg. 31, 1-18 (1982).
Google Scholar
[4]
Pandya, B. N. and Kant, T., A refined higher order generally orthotropic C° plate bending element, Comput. and Struct. 28, 119-133 (1988).
DOI: 10.1016/0045-7949(88)90031-4
Google Scholar
[5]
Pandya, B. N. and Kant, T., Finite element stress analysis of laminated composites using higher order displacement model, Compos. Sci. and Technol. 32, 137-155 (1988).
DOI: 10.1016/0266-3538(88)90003-6
Google Scholar
[6]
Kant, T. and Manjunatha, B. S., An unsymmetric FRC laminate Co finite element model with 12 degrees of freedom per node, Engg. Comput. 5(3), 300-308 (1988).
DOI: 10.1108/eb023749
Google Scholar
[7]
Kant, T. and Swaminathan, K., Analytical solutions for free vibration of laminated composite and sandwich plates based on a higher order refined theory, Compos. Struct. 53(1), 73-85 (2001).
DOI: 10.1016/s0263-8223(00)00180-x
Google Scholar
[8]
Kant, T. and Swaminathan, K., Analytical solutions for static analysis of laminated composite and sandwich plates based on a higher order refined theory, Compos. Struct. 56(4), 329-344 (2002).
DOI: 10.1016/s0263-8223(02)00017-x
Google Scholar
[9]
Swaminathan, K. and Patil, S. S., Higher order refined computational model with 12 degrees of freedom for the stress analysis of antisymmetric angle ply plates – analytical solutions, Compos. Struct. 80(4), 595-608 (2007).
DOI: 10.1016/j.compstruct.2006.07.006
Google Scholar
[10]
Swaminathan, K. and Patil, S. S., Analytical solutions using a higher order refined computational model with 12 degrees of freedom for the free vibration analysis of antisymmetric angle ply plates, Compos. Struct. 82(2), 209-216 (2008).
DOI: 10.1016/j.compstruct.2007.01.001
Google Scholar
[11]
Swaminathan, K. and Patil, S. S., Higher order refined computational models for the free vibration analysis of antisymmetric angle ply plates, J. of Reinf. Plast. and Compos. 27(5), 541-553 (2008).
DOI: 10.1177/0731684407084125
Google Scholar
[12]
Reddy, J. N., A simple higher order theory for laminated composite plates, ASME J. of Appl. Mech., 51, 745-752 (1984).
DOI: 10.1115/1.3167719
Google Scholar
[13]
Senthilnathan, N. R., Lim, K. H., Lee, K. H. and Chow, S. T., Buckling of shear-deformable plates, AIAA J. 25(9), 1268-1271 (1987).
DOI: 10.2514/3.48742
Google Scholar
[14]
Whitney, J. M. and Pagano, N. J., Shear deformation in heterogeneous anisotropic plates, ASME J. of Appl. Mech. 37(4), 1031-1036 (1970).
DOI: 10.1115/1.3408654
Google Scholar
[15]
Ren, J. G., Bending, vibration and buckling of laminated plates, In: Cheremisinoff NP, editor. Handbook of Ceramics and Composites, New York: Marcel Dekker; 1, 413-450 (1990).
DOI: 10.1201/9781003210085-14
Google Scholar
[16]
Reddy, J. N. and Phan, N. D., Stability and vibration of isotropic, orthotropic and laminated plates according to higher-order shear deformation theory, J. of Sound and Vib. 98(2), 157-170 (1985).
DOI: 10.1016/0022-460x(85)90383-9
Google Scholar