Design of a Hybrid Adaptive CMAC Tracking Control for a Class of Uncertain Chaotic Systems with only Output Measurement

Article Preview

Abstract:

This paper presents an observer-based hybrid adaptive cerebellar model articulation controller (CMAC) with a supervisory controller for uncertain chaotic systems, in which the hybrid adaptive control composed of a direct adaptive CMAC and an indirect adaptive CMAC control is performed as the sliding mode control (SMC). The total states of the chaotic system are not assumed to be available for measurement. A state observer is used to estimate unmeasured states of the systems. The supervised control is appended to assure that the hybrid adaptive CMAC controller achieve a stable closed-loop system through Lyapunov stability theory. Finally, simulation results show that the effect of the approximation error on the tracking error can be attenuated efficiently.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 383-390)

Pages:

5363-5368

Citation:

Online since:

November 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. J. Yan, K. K. Shyu and J. S. Lin, Chaos, Solitons & Fractals, Vol. 35 (2005), p.347.

Google Scholar

[2] C. M. Lin and C. H. Chen, Chaos, Solitons & Fractals, Vol. 35 (2008), p.40.

Google Scholar

[3] J. Wang, G. D. Qiao and B. Deng, Chaos, Solitons & Fractals, Vol. 24 (2005), p.1075.

Google Scholar

[4] C. Hua and X. Guan, Chaos, Solitons & Fractals, Vol. 22 (2004), p.55.

Google Scholar

[5] Y. J. Cao, Physics Letters A, Vol. 270 (2000), p.171.

Google Scholar

[6] J. S. Albus, Trans. ASME J. Dyn. Syst., Meas., Contr., Vol. 97 (1975), p.220.

Google Scholar

[7] J. S. Albus, Trans. ASME J. Dyn. Syst., Meas., Contr., Vol. 97 (1975), p.228.

Google Scholar

[8] K. S. Hwang and C. S. Lin, IEEE Trans. Syst., Man, Cybern. B, Vol. 28 (1998), p.680.

Google Scholar

[9] H. Shiraishi, S. L. Ipri and D. D. Cho, IEEE Trans. Contr. Sys. Technology, Vol. 3 (1995), p.32.

Google Scholar

[10] U. Itkis, Control Systems of Variable Structure, (Wiley Publications, New York, 1976).

Google Scholar

[11] J. J. E. Slotine and J. A. Coetsee, Int. J. Control, Vol. 43 (1986), p.1631.

Google Scholar

[12] C. M. Lin and T. -Y. Chen, IEEE Trans. Neural Networks, Vol. 20 (2008), p.1377.

Google Scholar

[13] Y. G. Leu, T. T. Lee and W. Y. Wang, IEEE Trans. Syst., Man, Cybern. B, Vol. 29 (1999), p.583.

Google Scholar

[14] J. H. Park and S. H. Kim, IEE Proc. Control Theory Application, Vol. 151 (2004), p.65.

Google Scholar

[15] L. X. Wang, IEEE Trans. Fuzzy Systems, Vol. 1 (1993), p.146.

Google Scholar