An Integrated Design and Fabrication Approach for Heterogeneous Objects

Article Preview

Abstract:

A novel method for the design and fabrication of heterogeneous objects is presented, which combines the Three Dimensional Printing (3DP) and micro droplets dispensing technology. It provides a solution to the fabrication of assemblies with multi materials, which can not be fabricated by traditional processes. An integrated design and fabrication system for heterogeneous objects based on the new process is introduced. Its constructive representation scheme is described. To show the effectiveness of the working process of multi-materials, based on slice software of color STL model and developing prototyping system, an example is shown to illustrate the entire design-fabrication cycle for heterogeneous objects.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 383-390)

Pages:

5810-5817

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Markworth AJ, Ramesh KS, Parks WP. Modeling studies applied to functionally graded materials,. Journal of Material Science, 1995, 30(9): 2183-2193.

DOI: 10.1007/bf01184560

Google Scholar

[2] Kumar V, Burns D, Dutta D, Hoffmann C. A framework for object modeling,. Computer-Aided Design, 1999, 31(9): 541-556.

DOI: 10.1016/s0010-4485(99)00051-2

Google Scholar

[3] Siu Y. K., Tan S. T. Modeling the material grading and structures of heterogeneous objects for layered manufacturing,. Computer-Aided Design, 2002, 34: 705-716.

DOI: 10.1016/s0010-4485(01)00200-7

Google Scholar

[4] Kou X Y, Tan S T. Heterogeneous object modeling: A review,. Computer-Aided Design, 2007, 39: 284 -301.

DOI: 10.1016/j.cad.2006.12.007

Google Scholar

[5] Yang Pinghai, Qian Xiaoping. A B-spline- based approach to heterogeneous objects design and analysis,. Computer-Aided Design, 2007, 39: 95–111.

DOI: 10.1016/j.cad.2006.10.005

Google Scholar

[6] Kou X Y, Tan S T, Sze W S. Modeling complex heterogeneous objects with non-manifold heterogeneous cells,. Computer-Aided Design, 2006, 38: 457–474.

DOI: 10.1016/j.cad.2005.11.009

Google Scholar

[7] Jackson T R, Liu H, Partikalakis N M, Sachs E M, Cima M J. Modeling and designing functionally graded material components for fabrication with local composition control, Material Design, 1999, 20: 63-75.

DOI: 10.1016/s0261-3069(99)00011-4

Google Scholar

[8] Patil L, Dutta D, Bhatt AD, Jurrens K, Lyons K, Pratt M J, Sriram R D. A proposed standard-based approach for representing heterogeneous objects for layered manufacturing,. Rapid Prototyping Journal, 2002, 8(3): 134-146.

DOI: 10.1108/13552540210430979

Google Scholar

[9] Siu Y K, Tan S T. 'Source-based' heterogeneous solid modeling,. Computer-Aided Design, 2002, 34: 41-55.

DOI: 10.1016/s0010-4485(01)00046-x

Google Scholar

[10] Biswas A,Shapiro V, Tsukanov I. Heterogeneous material modeling with distance fields,. Computer Aided Geometric Design, 2004, 21(3): 215-242.

DOI: 10.1016/j.cagd.2003.08.002

Google Scholar

[11] Xiaojun Wu , Weijun Liu, Michael Yu Wang. A CAD modeling system for heterogeneous object,. Advances in Engineering Software, 2008, 39: 444-453.

DOI: 10.1016/j.advengsoft.2007.03.002

Google Scholar

[12] Samanta K, Koc B. Feature-based material blending for heterogeneous object modeling,. Heterogeneous Objects Modelling and Applications. Heidelberg: Springer Berlin, 2008, 4889: 142-166.

DOI: 10.1007/978-3-540-68443-5_6

Google Scholar

[13] X.Y. Kou, S.T. Tan. A systematic approach for Integrated Computer-Aided Design and Finite Element Analysis of Functionally-Graded-Material objects,. Materials and Design, 2007, 28: 2549–2565.

DOI: 10.1016/j.matdes.2006.10.024

Google Scholar

[14] Yakovleva A, Trunovaa E, Greveya D, Pilloz M, Smurov I. Laser-assisted direct manufacturing of functionally graded 3D objects,. Surface & Coatings Technology, 2005, 190: 15-24.

DOI: 10.1016/j.surfcoat.2004.07.070

Google Scholar

[15] Chien C H, Yu H M. The novel fabrication of multi-metal layers embedded in PMMA polymer material,. Journal of Materials Processing Technology, 2007, 187-188: 314-317.

DOI: 10.1016/j.jmatprotec.2006.11.197

Google Scholar

[16] Cho W J, Sachs E M, Patrikalakis N M, Troxel D E. A dithering algorithm for local composition control with three-dimensional printing,. Computer-Aided Design, 2003, 35(9): 851-867.

DOI: 10.1016/s0010-4485(02)00122-7

Google Scholar

[17] Yang S F, Evans J R G. A multi- component powder dispensing system for three dimensional functional gradients,. Material Science Engineering, 2004, 379(1-2): 351-359.

DOI: 10.1016/j.msea.2004.03.047

Google Scholar

[18] Bremnan R E, Turcu S, Hall A, Hagh N M, Safari A . Fabrication of electroceramic components by layered manufacturing(LM),. Ferroelectrics, 2003, 293(1): 3-17.

DOI: 10.1080/00150190390238072

Google Scholar

[19] Yan Y N, Xiong Z, Hu Y Y, Wang S G, Zhang R J , Zhang C. Layered manufacturing of tissue engineering scaffolds via multi-nozzle deposition,. Material Letter, 2003, 57(18): 2623-2628.

DOI: 10.1016/s0167-577x(02)01339-3

Google Scholar

[20] Choi S H, Cheung HH. A topological hierarchy-based approach to toolpath planning for multi-material layered manufacturing,. Computer-Aided Design, 2006, 38: 143–156.

DOI: 10.1016/j.cad.2005.08.005

Google Scholar

[21] S. M. Zakir Hossain, Roger E. Luckham, Anne Marie Smith, et al. Development of a Bioactive Paper Sensor for Detection of Neurotoxins Using Piezoelectric Inkjet Printing of Sol-Gel-Derived Bioinks,. Analytical Chemistry. 2009, 81(13): 5474–5483.

DOI: 10.1021/ac900660p

Google Scholar