Modeling and Optimization of Wire Electrical Discharge Machining of Cold-Work Steal 2601

Article Preview

Abstract:

In this study, the appropriate input parameters for achieving minimum surface roughness and high material removal rate are selected for wire electrical discharge machining of cold-work steel 2601. Mathematical modeling acquired by experimental result analysis is used to find the relation between input parameters including electrical current, gap voltage, open-circuit voltage and pulse-off time and output parameters. Subsequently, with exploitation of variance analysis, importance and effective percentages of each parameter are studied. The combination of optimum machining parameters is acquired using the analysis of ratios of signal-to-noise. Finally, according to multiple-objective optimization, outputs acquired from Non-dominated Sorting Genetic Algorithm led in achieving appropriate models. The optimization results showed suggested method has a high performance in problem solving.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 383-390)

Pages:

6695-6703

Citation:

Online since:

November 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Scott, S. Boyna, K.P. Rajurkar, Analysis and optimization of Parameter Combinations in WEDM, Int. J. Prod. Res., Vol. 29, p.2189–2207, (1991).

Google Scholar

[2] T.A. Spedding, Z.O. Wang, Parametric Optimization and Surface Characterization of Wire Electrical Discharge Machining Process, Int. J. Precision Eng., Vol. 20, p.5–15, (1997).

DOI: 10.1016/s0141-6359(97)00003-2

Google Scholar

[3] M. Rozenek. M, J. Kozak,L. Dabrovwki, K. Lubkovwki, Electrical Discharge Machining Characteristics of Metal Matrix Composites,J. Mater. Process. Technol. Vol. 109, pp.367-370, (2001).

DOI: 10.1016/s0924-0136(00)00823-2

Google Scholar

[4] N. Tosun, C. Cogun, H. Pihtili, The Effect of Cutting Parameters on Wire Crater Sizes in WEDM, int. J. Adv. Manuf. Techonl., Vol. 21, pp.857-865, (2003).

DOI: 10.1007/s00170-002-1404-1

Google Scholar

[5] N. Tosun,C. Cogun, An Investigation on Wire Wear in WEDM, j. Mater. Process. Technol. Vol. 134 (3), pp.273-278, (2003).

DOI: 10.1016/s0924-0136(02)01045-2

Google Scholar

[6] Montgomery DC, Design and Analysis of Experiments, 3rd edn. Wiley, Singapore, (1991).

Google Scholar

[7] Hicks CR, Turner Jr KV, Fundamental Concepts and the Design of Experiments. Oxford University Press, New York, (1999).

Google Scholar

[8] J.Y. Kao, Y.S. Tarng, A Neutral-network Approach for the On-line Monitoring of the Electrical Discharge Machining Process, J. Mater. Process. Technol. Vol. 69, p.112–119, (1997).

DOI: 10.1016/s0924-0136(97)00004-6

Google Scholar

[9] K. Deb, P. Amrit, A. Samir, and Meyarivan, IEEE Trans. Evol. Comput. 6, 182 (2002).

Google Scholar

[10] M. Debabrata, K. Pa. Surjya, S. Partha, Modeling of Electrical Discharge Machining Process using Back Propagation Neural Network and Multi-objective Optimization using Non-dominating Sorting Genetic Algorithm-II, J. Mater. Process. Technol. Vol. 186, p.154–162, (2007).

DOI: 10.1016/j.jmatprotec.2006.12.030

Google Scholar

[11] K. Palanikumar, B. Latha, V.S. Senthilkumar, R. Karthikeyan, Multiple Performance Optimization in Machining of GFRP Composites by a PCD Tool using Non-dominated Sorting Genetic Algorithm (NSGA-II), Met. Mater. Int., Vol. 15, No. 2, pp.249-258, (2009).

DOI: 10.1007/s12540-009-0249-7

Google Scholar