Computer Modeling of MWIR Homojunction Photodetector Based on Indium Antimonide

Article Preview

Abstract:

High operating temperatures infrared photodetectors are needed for improving the performance of existing military and civilian infrared systems. To obtain high device performance at higher temperatures, the thermally generated noise required to be reduced. Minority-carrier extraction and exclusion techniques are the approaches for decreasing the thermal noise of infrared systems. In the present work, an InSb extraction diode was studied and simulated for operation in the MWIR region. The simulation was performed using ATLAS device simulator from SILVACO®. The energy band diagram, doping profile, electric field profile, dark current and spectral response were calculated as a function of device thickness, applied reverse voltage and operating wavelength. The simulated photodetector exhibited a zero bias resistance-area product, R0A = 1.6×〖10〗^(-3) Ω〖.cm〗^2 at 240K.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 383-390)

Pages:

6806-6810

Citation:

Online since:

November 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Rogalski, heterostructure infrared photodiodes, ', Semiconductor Physics, Quantum Electronics & Optoelectronics, vol. 3, no. 2, 2000, pp.111-120.

DOI: 10.15407/spqeo3.02.111

Google Scholar

[2] A. Tevke, C. Besikci, C. Van Hoof, G. Borghs, InSb infrared p–i–n photodetectors grown on GaAs coated Si substrates by molecular beam epitaxy, Solid-State Electronics, vol. 42, no. 6, 1998, pp.1039-1044.

DOI: 10.1016/s0038-1101(98)00124-5

Google Scholar

[3] A. Rogalski, Infrared detectors: an overview, Infrared Physics & Technology, vol. 43, 2002, pp.187-210.

DOI: 10.1016/s1350-4495(02)00140-8

Google Scholar

[4] A. Piotrowski, P. Madejczyk, W. Gawron, K. Kłos, J. Pawluczyk, M. Grudzień, J. Piotrowski, and A. Rogalski, MOCVD HgCdTe heterostructures for uncooled infrared, Proc. SPIE, vol. 5732, 2005, p.273–284.

DOI: 10.1016/j.infrared.2006.06.026

Google Scholar

[5] T. Ashley and C. T. Elliot, Nonequilibrium devices for infrared detection, Electron. Lett, vol. 21 , no. 10, 1985, pp. 451_452.

Google Scholar

[6] E. Sijercic, K. E. Mueller and B. Pejcinovic, Simulation of InSb devices using drift–diffusion equations, Solid-State Electronics, vol. 49 , 2005, p.1414–1421.

DOI: 10.1016/j.sse.2005.05.012

Google Scholar

[7] P.K. Saxena and P. Chakrabarti, Computer modeling of MWIR single heterojunction photodetector based on mercury cadmium telluride, Infrared Physics &Technology, vol. 52, 2009, pp.196-203.

DOI: 10.1016/j.infrared.2009.07.009

Google Scholar

[8] A.D.D. Dwivedi, A. Mittal, A. Agrawal, P. Chakrabarti, Analytical modeling and ATLAS simulation of N+-InP/n0-In0. 53Ga0. 47As/p+-In0. 53Ga0. 47As p-i-n photodetector for optical fiber communication, Infrared Physics &Technology, vol. 53, 2010, pp.236-245.

DOI: 10.1016/j.infrared.2010.03.003

Google Scholar

[9] ATLAS User's Manual, Device Simulation Software, SILVACO International, Santa Clara, CA 95054, (2004).

Google Scholar

[10] R. Ashokan, T. S. Lee, J. Zhao, Y. Chang, and S. Sivananthan, Mercury Cadmium Telluride For High Operating Temperature Infrared Detectors, Proceedings for the Army Science Conference, (2004).

Google Scholar

[11] T. Ashley, A. B. Dean, C. T. Elliott, C. F. McConville, G. J. Ptyce, and C. FL Whitehouse, Ambient temperature diodes and field-effect transistors in InSb/ln1-xAlxSb, Appl. Phys. Lett, vol. 59, no. 14, 1991, pp. 1761_1763.

DOI: 10.1063/1.106216

Google Scholar

[12] T. Ashley and C. T. Elliott, Operation and properties of narrow-gap semiconductor devices near room temperature using non-equilibrium techniques, Semicond. Sci. Technol, vol. 6, 1991, pp. ‏ c99-c105.

DOI: 10.1088/0268-1242/6/12c/020

Google Scholar